Deos

Real-Time Operating System for Mission/Safety-Critical Software Systems

– Technical Overview –
Agenda

• Introductions
• Company Background
• Deos competitive differentiators
• Technical Overview
 • Avionics Pedigree
 • Scheduling Partitioning, RMA, 653, POSIX
 • Certified Software Reuse
 • Data Distribution Service
 • Multicore and FAA CAST-32A
 • FACE, POSIX and Additional Components
 • Development Tooling
Leading provider of mission/safety-critical software solutions for 30 years.

- Headquarters in Phoenix, AZ
 - World-wide presence

- Primary market: Certifiable avionics software
Core Competencies

• Certifiable, safety-critical RTOS products
 • Deos (ARINC-653, RMA, POXIS or hybrid)

• Integrated Development Environment (IDE)
 • Development, testing & analysis tools

• DO-178/ED-12 certification expertise
 • First DO-178 DAL-A (Ada) product released in 1992
 • We perform our own certification work
 • We defend our certification artifacts during all audits
 • We do not reverse engineer certification artifacts
Corporate Milestones

- Founded 1985 – Ada compiler for x86, 860
- 1988 – DACS selected by Honeywell, RC, etc.
- 1991 – DO-178 DAL-A Ada runtime
- 1998 – Deos certified to DAL-A (by Honeywell)
- 2008 – Licensed Deos and HeartOS
- 2012 – ARINC-653 offered on Deos
- 2016 – Deos SafeMC released, ARM offered
- 2019 – FACE 3.0 conformance, Engineering doubled in size to keep up with rapid growth
Supported CPUs

• **ARM A**
 - A9 - Xilinx Zynq 7000, NXP i.MX6, Altera Cyclone V
 - A53 - Xilinx Ultrascale+, NXP i.MX8, S32V234, QorIQ Layerscape LS1043A, LS1048A
 - A72, A15 – Contact DDC-I

• **Intel** (and compatibles)
 - x86 (Pentium, Atom, Celeron, Core (duo, i7, …), AMD GSeries)

• **PowerPC**
 - e6500/e5500/e500/e500mc (QorIQ), e200 micro-controllers (51xx, 52xx, 56xx, 57xx), G2/603e (82xx), G3 (7xx), e300 (83xx), G4/e600 (74xx, 86xx), 405x, 440x, 465x

• **MIPS**
 - … support for more processor families & processor cores than any other partitioned certifiable COTS RTOS…
The Deos RTOS

Differentiators
- Avionics Pedigree
- Scheduling Partitioning, RMA & 653
- Certified Software Reuse
- Data Distribution Service
- Multicore and FAA CAST-32A
- Development Tooling
Top Level Differentiators

- One RTOS product line - no product fragmentation for 653, multicore, or processor type (no CPU dependencies)
- Designed for Reuse – DAL A linking loader built in, RTOS built of independent relocatable libraries.
- Technical - Almost 20 patents on Deos
 - Originally : Slack scheduling, RMA scheduling, etc.
 - Recently : Cache partitioning, Safe Scheduling, etc.
 - Controlling interference patterns on multicore systems
 - Key multicore design criteria – cannot be “bolted on as an afterthought”
- Very strong support team and support models
- Company focus on real-time safety critical
Differentiators - Portability

• Consistent certifiable code base line across processors
 • PowerPC to ARM to x86 is a recompile (ask our partners)
 • Only one Deos baseline (not 6 or 7 versions which is costly for customers)
 • Deos designed modularly 20 years ago

Customer Benefit:

1. *Modularity and reuse yields significant cost savings*
2. *Deos is easily offered on new processors*
3. *Tooling is consistent, 3rd party products migrate*

• Consistent set of artifacts, processes and test suite
 • DDC-I has always done our artifacts in house (no Verocel or 3rd party)
 • Modularity enables us to leverage prior certifications
 • Rarely break backward compatibility
Differentiators - Technical

- **Flexible scheduling**
 - Can use RMA scheduling to compliment ARINC 653 scheduling
 - Slack scheduling maximizes CPU performance
 - Safe Scheduling for multicore (patented) – can use all cores for DAL-A

- **Performance**
 - Extremely quick boot up times
 - Often 30% faster than competition on context switch times

- **Toolset**
 - Based on Eclipse and GNU (but can run other)
 - DO-330 qualified where applicable
 - Timing & resources tracked in Deos kernel and presented via tooling
 - Critical time kernel gathers performance statistics
 - Included coverage tool (ABC) provides MC/DC at binary level
Differentiators – Technical (cont)

- **DDS** - Deos has a DAL-A DDS (IOI) built in
 - Provides data abstraction – needed for binary reuse.
 - Highly efficient – customers track thousands of data points
 - User Space library, configurable via XML package

- **Optional components:**
 - CFFS (certifiable fast file system) - Optional ARINC 653 P2 APIS
 - AFDX libraries (ARINC 664)
 - TTE libraries (time triggered Ethernet)
 - POSIX libraries
 - ARINC 615A Target Data Loader libraries

- **Watermarking**
 - Deos kernel tracks and can report performance statistics
 - Can leverage CPU performance monitors, useful in multicore
The Deos RTOS

Overview

Avionics Pedigree

Scheduling Partitioning, RMA & 653 Certified Software Reuse
Data Distribution Service
Multicore and FAA CAST-32A
Security Building Blocks
Development Tooling
Background

- Designed *from the ground up* for:
 - Mission-/safety-critical applications & DAL A
 - Real-time performance
 - Integrated Modular Avionics (IMA)

- 1998: Initial certification baseline (DAL A)
- 2017: Latest certification baseline (DAL A)
- 2020: Next planned certification baseline (DAL A)

… a mature, trusted product, widely deployed for over 15 years.
Deos Deployments

Aircraft
- Agusta AB-139
- Airbus A320, A330, A340, A380, **A400M**
- Bell-Boeing **V-22 Osprey**
- Boeing 757, 777, 787, F-18,
- Bombardier CSeries, Global Express
- Cessna Citation V, Sovereign
- Comac ARJ21, C919
- Dassault F7X, F900, F2000
- Embraer ERJ-170, ERJ-175, ERJ-190, ERJ-195
- Gulfstream GIV-X, GV, G150, G200, G350, G450, G500, G550, G650
- Hafei Y-12
- Hawker Horizon, 450
- Hindustan Aeronautics Limited, LUH, ALH
- Lockheed C-5, **C-130J, C-141**
- Pilatus PC-12NG, PC-12-NGX
- Spectrum S-40
- Viking Twin Otter

Avionics Functions
- Air Data Computer
- Air Data Inertial Reference Unit
- Cockpit Video
- Communications & Radios
- Data Recorders
- De-Icing
- Digital Engine Controller
- Displays
- Electronic Flight Bag
- Enhanced Ground Proximity Warning
- Flight Controls
- Flight Instrumentation
- Flight Management
- Health Management
- Maintenance
- Power Distribution
- Traffic Collision Avoidance System
- Weather Radar

… best-in-class service history on a broad range of aircraft & functions.
Certification Baselines (DAL A)

A single line of on-going DAL-A development

Jun 98 Jun 01 May 02 Jul 02 Mar 05 Dec 09 May 11 Aug 13 Mar 15 May 17 Mar 20 Jan 21

v 5.0 TC v6.5.0 FAA v6.9.2 FAA/JAA v6.12.0 FAA/JAA v7.1.0 EASA/FAA v7.2.3 EASA/FAA v7.6.2 EASA/FAA v7.10.6 TC/DERs v8.3.1 KCA/FAA v8.4.2 TC V9.x FAA

Planned

Some auditors we’ve worked with

• Jozef van Baal – JAA
• Connie Beane – FAA
• Marc Bouvelle – EADS
• Jorge Castillo – FAA
• Mike DeWalt – FAA
• Ricky Jones – FAA
• Sylvain Le-Borgne – EADS
• Ian Mac Laren – EASA
• Pippa Moore – JAA
• Don-Jacques Ould-Ferhat – EADS
• John Philbin – FAA
• Gerald Piij – FAA
• Leanna Rierson – FAA
• Cecile Saint-Marcoux – EADS
• Cédric Salson – EASA
• Will Struck – FAA
• Giuliana Tamburro – ENAC
• Dennis Wallace – FAA
• DERs – Agusta, Airbus, Boeing, Bombardier, Cessna, Dassault, Embraer, Goodrich, Gulfstream, Honeywell & Raytheon

… best-in-class certification record, well-known & respected in the industry.
The Deos RTOS

Overview
Avionics Pedigree

Scheduling Partitioning, RMA & 653
Certified Software Reuse
Data Distribution Service
Multicore and FAA CAST-32A
Development Tooling
Deos High-Level Architecture

…loosely-coupled, modular application software partitions.

Target Hardware
- Application hardware (I/O devices, Serial buses, etc)
- CPU
- Platform hardware (RAM, flash, timer, interrupt controller)
- Graphics chipset
- Ethernet chipset

Target Software
- User Mode Device Drivers
- Graphics DAL B
- Network DAL E
- Driver library
- Socket Library DAL A
- Partition 5 DAL C
- Partition 4 DAL B
- Partition 3 DAL A
- Partition 2 DAL C
- Partition 1 DAL C
- Driver library

User Space
- Application 1
- Application 2

Kernel Space
- Deos kernel
- PAL
- Registry

Interrupts
- I/O

…loosely-coupled, modular application software partitions.
• Bounds, controls & minimizes cross-core contention
 • Major frame partitioned into “windows”
 • Window boundaries align across cores
• Multiple scheduler/API types available
• Allows for a mix of safety apps, or safety & non-safety apps

… optimizes application ACET/WCET behaviors and bounds WCET behavior.
Deos: Four Scheduling Options

1. Rate Monotonic – Highest throughput & fidelity
2. ARINC 653 – Industry standard API
3. Hybrid (RMA + ARINC 653) – Best of both
4. POSIX – real-time priority preemptive scheduler.
 Supports Safety Base Profile (Face Technical Standard)

Each are highly deterministic
All but POSIX are DO-178 DAL-A certifiable
All share a large common code base, tooling, etc.
RMA Scheduling & Time Partitioning

- Rate monotonic scheduling of periodic time partitions
- Threads have execution rates & time budgets
- Scheduler enforces time budgets
- Aperiodic rates & interrupts supported
RMA & Slack Scheduling

- Pure slack applications & enhanced quality of service
- Increased processor utilization
653 Scheduling &
Time Partitioning

- Fixed-cyclic scheduling of 653 partitions
- Processes scheduled within partitions
- 653 partitions have time budgets
- Scheduler enforces time budgets
- Interrupts not supported during partition

Scheduling of 653 partitions/processes
Budgeted but unused 653 timeline
Unallocated 653 timeline
Hybrid RMA/653 Scheduling

- Enables RMA (with all its features) for more optimal performance *and* ARINC-653 for 3rd party applications
- May be used with Deos 653 Slack Windows & interrupts

<table>
<thead>
<tr>
<th>Partition</th>
<th>Process Scheduling</th>
<th>653 Partition Scheduling</th>
<th>RMA Partition Scheduling</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>P₁ P₂ P₃</td>
<td>Pₐ₁ Pₐ₂ Pₖ₁ Pₖ₂</td>
<td>Pₛ P₁ P₃</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Scheduling of 653 partitions/processes
- Budgeted but unused 653 timeline; becomes RMA slack
- Unallocated 653 timeline
- Scheduling of RMA partitions
POSIX Support via RTEMS

- RTEMS provides the POSIX interfaces and 27 years of RTOS experience in the space and military domains
- POSIX 1003.1b a.k.a. Open Group Single Unix Specification
- Within limits of single process environment
- High performance with deterministic behavior
- Low overhead and predictable

- FACE 3.0 conformance
- PPC (Deos SafeMC)
- ARM and Intel underway (Deos SafeMC)
- Safety Base conformance (Security is a subset)
Performance

• Designed *from the ground up* to meet the most demanding real-time requirements

• Very low overhead:
 • System tick handling
 • Context switch – 2.6μs
 • Interrupt latency – 5.8μs (kernel-mode) to 11.8μs (user-mode)
 • Cold/warm-start – as low as 100ms
 • Customer Boot requirements
 • From end of Boot to first line of application code 7ms

• Scales-up gracefully

... *best-in-class performance.*
Context Switch Timing Multicore

Partition Switch Times (usec)

<table>
<thead>
<tr>
<th>Partitions</th>
<th>Min</th>
<th>Max</th>
<th>Avg</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>3.3</td>
<td>4.72</td>
<td>3.83</td>
</tr>
</tbody>
</table>

Process Switch Times (usec)

<table>
<thead>
<tr>
<th>Partitions</th>
<th>Min</th>
<th>Max</th>
<th>Avg</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1.29</td>
<td>1.47</td>
<td>1.36</td>
</tr>
</tbody>
</table>

Partition Switch Times (usec)

<table>
<thead>
<tr>
<th>Partitions</th>
<th>Min</th>
<th>Max</th>
<th>Avg</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>6.56</td>
<td>10.32</td>
<td>7.7</td>
</tr>
</tbody>
</table>

Process Switch Times (usec)

<table>
<thead>
<tr>
<th>Partitions</th>
<th>Min</th>
<th>Max</th>
<th>Avg</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1.12</td>
<td>1.68</td>
<td>1.24</td>
</tr>
</tbody>
</table>

Xilinx Ultrascale A53, 4 cores.

NXP PPC T1042, 4 cores.
Common ARINC-653 RTOS Implementation Issues

- System ticks = Minor frame
 - WCET system tick can be several 10's of microseconds, or worse (vendor dependent) due to context switch, cache impact, etc.
 - Example impact: if smallest partition is 0.5ms, and system tick overhead is 50μs; 10% of the processing bandwidth is lost (e.g., a 20 ms partition will have: 40 ticks x 50μs = 2ms system tick overhead)

Not with Deos! System Tick can be at major frame rate, slower, or faster
Key Scheduling Differentiators

- MMU (not MPU) Partitioning
- Scheduler Options:
 1. ARINC 653 Part 1
 2. RMA architecture facilitates higher performance
 3. Hybrid RMA/653 capability enables best of “both worlds”
 4. POSIX
- Slack scheduling
 - Utilize “budgeted-but-unused” time, maximizing CPU utilization
 - Enable sophisticated “background” tasks
 - Enable higher quality-of-service behaviors (e.g., Ethernet transfers, display refreshes, etc.)
 - Enables tooling to run without imposing on timelines

© 2019
Confidential and Proprietary
The Deos RTOS

Overview
Avionics Pedigree
Scheduling Partitioning, RMA & 653

Certified Software Reuse
Data Distribution Service
Multicore and FAA CAST-32A
Development Tooling
Binary Modularity

- Enabling Deos Technology: DAL-A loader & (dynamic) linker
- Application partitions & libraries (.exe & .so)
 - Each has a DAL with a full certification package
 - Identical binaries & artifacts used program-to-program
 - Minimal rework (verf/cert activities & artifacts) & integration testing required
- Same strategy Deos & its libraries have used for 20 years

... modularity enables reuse of software & certification artifacts.
Reusable By Design

• Deos is designed to enable application software component portability, where binary (not just source code) reuse is the ultimate form of portability.

• Deos key technologies:
 • DO-178C-Level A, Time and space partitioning
 • DO-178C-Level A, dynamic loader/linker which is a critical element in enabling binary modularity and the reuse of DO-178 certification artifacts. Released decades ago.
 • Well controlled software component interfaces
 • Component based documentation and XML configuration files
 • No artificial constraints on resources
 • No magic numbers in code
 • API parameters in XML configuration files, not in the code
Binary Reusable Software Components

• **The Solution:** Binary partitioning isolates change impact & maximizes reuse
• Binary Reusable Software Components is the software equivalent of a black box.

- The APIs are the connections
- Cyclic Redundancy Check (CRC) is the protective casing
Certifiability – Binary Component

• Each Deos Binary Component Is Separately Verified, Having its own:
 • Configuration (XML)
 • Verification (requirements/design review) results & reports
 • Source Code (design/review, code reviews) reports
 • Documentation, including integration & guidance
 • Tests & test adequacy reports (structural coverage analysis)
 • Binary executable with CRC

...Simplifies certification & reduces change impact costs
The Deos RTOS

Overview
Avionics Pedigree
Scheduling Partitioning, RMA & 653
Certified Software Reuse

Data Distribution Service
Multicore and FAA CAST-32A
Development Tooling
The Reality of I/O

- Aircraft to aircraft, platform to platform, I/O tends to be volatile
 - data sources & destinations
 - engineering units, data types, data rates
- I/O is often a major component of any avionics development
 - large numbers of data items
 - significant change impact driving significant change
- How to isolate your software from this volatility?
 - reduce risk, shorten schedule & minimize cost
 - maximize reuse
Data Distribution (IOI)

- DAL-A User Space Publish/Subscribe Mechanism
- Data handling
 - Periodic and aperiodic
 - Mixed data rates & buffering
 - Freshness checking
 - ARINC 653 (Sampling / queuing ports)
 - Data Queuing (FIFO, Blackboard, LastProduced)
- User-defined formatting functions
 - Data type conversion, unit conversion, etc.
- XML-based configuration
 - Qualified tool
Inter Process Communication

IOI XML
Produced Item
-airspeed
Consumed Item
-airspeed

ARINC653
WRITE_SAMPLING_MESSAGE(airspeed)
ioiWrite(airspeed)
P1

IOI

RAM
airspeed

ARINC653
READ_SAMPLING_MESSAGE(airspeed)
ioiRead(airspeed)
P3
Chaining and Formatting

IOI XML
Produced Items
- Airspeed
- Windspeed
Consumed Item
- Groundspeed
 • Format airspeed on read
 - Mph2kph
 • Format windspeed on read
 - Knts2kph
 • GS=AS - WS

On read of groundspeed by P3 airspeed is converted from mph to kph, windspeed is converted from knts to kph, groundspeed is calculated from these 2 values and delivered to P3.
Binary Modularity & IOI Differentiators

• Think components, interfaces and black box
• Concurrent component development possible
• Minimize/bound change impact
 • Adapt to late-in-program changes
 • Isolate I/O volatility
 • Supports product line development methodology
• Enables independent development & testing
• Allows for-credit, off-target functional testing

Maximize reuse of software & certification artifacts
The Deos RTOS

Overview
Avionics Pedigree
Scheduling Partitioning, RMA & 653
Certified Software Reuse
Data Distribution Service

- Multicore and FAA CAST-32A
 Development Tooling
Multicore Guidance CAST-32A

- **Software Planning**
 - How many processors, what OS architectures and how they manage the cores.

- **Planning and configuration of MCP**
 - Document MCP settings to satisfy requirements
 - Document MCP settings contingency plans
 - Document resource partitioning and how you plan to mitigate contention issues.

- **Interference Channels and Resource Usage**
 - Identified the interference channels and chosen means of mitigation of the interference.

- **Software Verification**
 - Verify all the hosted software components function correctly and have sufficient time to complete their execution in the final configuration.
 - Verify that the data and control couplings between all the individual software components hosted on the same core or on different cores.

- **Error Detection and Handling, and Safety Nets**

- **Reporting of Compliance with the Objectives of this Document**

https://www.faa.gov/aircraft/air_cert/design_approvals/air_software/cast/cast_papers/media/cast-32A.pdf
Multicore Processor Objectives

<table>
<thead>
<tr>
<th>OBJECTIVES</th>
<th>DALs</th>
<th>DESCRIPTION</th>
<th>DDC-I COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCP_Planning_1:</td>
<td>A, B, & C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCP_Resource_Usage_1:</td>
<td>A, B, & C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCP_Resource_Usage_2:</td>
<td>A & B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCP_Planning_2</td>
<td>A, B, & C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCP_Resource_Usage_3:</td>
<td>A & B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCP_Resource_Usage_4:</td>
<td>A & B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCP_Software_1:</td>
<td>A, B, & C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCP_Software_2:</td>
<td>A, B, & C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCP_Error_Handling_1:</td>
<td>A & B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCP_Accomplishment_Summary_1:</td>
<td>A, B, & C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OBJECTIVES</td>
<td>DALs</td>
<td>DESCRIPTION</td>
<td>DDC-I COMMENT</td>
</tr>
<tr>
<td>---------------------</td>
<td>---------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>MCP_Planning_1:</td>
<td>A, B, & C</td>
<td>The applicant’s software plans or other deliverable documents:</td>
<td>DDC-I supports many different multicore processors (MCP), this is product specific to be addressed by target system developer.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1) Identify the specific MCP processor, including the unique identifier from the manufacturer,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Deos supports the ability to select the number of which cores of an MCP to use, this determination is product specific to be addressed by target system developer.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2) Identify the number of active cores,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>The Deos software architecture is bounded multiprocessing (BMP). The component features of Deos to be used as well as the software applications are product specific to be addressed by target system developer.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3) Identify the MCP software architecture to be used and all the software components that will be hosted on the MCP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4) Identify any dynamic features provided in software hosted on the MCP that will be activated and provide a high-level description of how they will be used,</td>
<td>Deos allows target system developers to bound dynamic features in both time and space. Consequently, for a given configuration, there is a deterministic bound on execution time and required memory. Additionally, Deos uses a BMP scheduler as part of its bounded execution time guarantee.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5) Identify whether or not the MCP device will be used in an IMA platform to host software applications from more than one system,</td>
<td>Deos provides support for the development of IMA systems with multiple levels of safety. The desire to take advantage of these features is product specific to be addressed by target system developer.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6) Identify whether or not the MCP Platform will provide Robust Resource and / or Time Partitioning as defined in this document,</td>
<td>The MCP Platform will provide Robust Resource and Time Partitioning as defined in CAST-32A. The Deos product line provides Robust Resource Partitioning and Robust Time Partitioning by giving the target system developer interference channel solutions that range from elimination of the interference channel to a definitive bound on the interference channel utilizing features like Safe Scheduling, Cache Partitioning, and bounding memory transactions.</td>
</tr>
<tr>
<td>MCP_Resource_Usage_1:</td>
<td>A, B, & C</td>
<td>The applicant has determined and documented the MCP configuration settings that will enable the hardware and the software hosted on the MCP to satisfy the functional, performance and timing requirements of the system.</td>
<td>DDC-I provides a detailed users guides for the functionality and configuration of Deos. The target system developer is responsible for using these Users Guides to ensure correct configuration as well as CBIT check of configuration, if applicable.</td>
</tr>
</tbody>
</table>
Safety Critical Multi-Core

Safety Critical Multicore Concerns:

1. Bound & control interference patterns
 A. Minimize contention for shared resources (e.g., cache, memory, & devices)
 B. Coordinate behaviors amongst cores

2. Getting good value from adding secondary cores
 Example concern: WCE will increase due to multicore interference patterns

Deos Multicore Solutions: SafeMC™

1. Reduce interference patterns and reduce WCETs
 A. Memory pooling & cache partitioning
 B. Safe-scheduling

2. Performance enhancing features
 A. Concurrent execution as a performance advantage
 B. Slack scheduling, including Window Activation for multicore
 • Recovers and applies additional slack resulting from higher WCETs
 C. Enable deterministic interrupting devices

1. Patented
Multicore Scheduling with Deos

- Critical and non-critical apps can run on any core
- Each core has dedicated (partitioned) resources
- All cores turned on
- Resource contention is low
- Resource utilization is maximized

... highly-utilizes processing resources & maximizes SW design flexibility.
Cache In Deterministic Systems

- The greatest performance factor for modern processors
- Growing in size and number of levels (e.g., L1, L2, and L3)
- Left uncontrolled, cache will cause performance variability (e.g., cache thrashing which increases the gap between best and worst case execution time (WCET))

Studies show that cache variability must be resolved in deterministic multicore systems
Cache Contention

Processes/Partitions 0 & 1 access RAM:

- Each overwrite portions of cache
- Resulting cache ‘thrashing’ makes WCE difficult to determine
- In the end, P0 & P1 pay the “cost” of cache misses
Cache Performance Variability Solutions

Cache variability is a significant issue for deterministic systems, that must be solved. Fixes include:

1. **Cache flushing** (e.g., flush cache between applications)
 - Good: Reduces performance variability
 - Bad: Forces cache flush overheads at an application context switch

2. **Disabling of cache**
 - Good: Eliminates cache performance variability
 - Bad: Huge performance penalty – forces the processor to a low level of performance. Also impractical for multicore processors.

3. **Cache Partitioning** – Several option with various results
 - Deos cache partitioning (patented)
 - Cache locking
Deos Memory Pools & Cache Partitioning

- Reduces cache thrashing
- All in software (portable)
- Memory Pooling - Enables physical memory segmentation (a key advantage for microcontrollers)
- Partition per application per core.
- No application specific code
- No cache locking instructions used

...minimizes cache contention, maximizes cache hits, and improves WCETs.
Cache Partitioning – Bounding WCETs

- Bounds & controls cache interference patterns
- Can dramatically improve WCET performance
Fine Grain Locking

• In the kernel all locking is done in a single core space only, therefore, no cross core blocking is possible.
 • No cross core locks (No resources used for all cores)
 • No single lock for scheduling (each core has a scheduler)
 • No single lock for all kernel interface objects (each object created has its own lock)

• Cross core blocking is only possible if a developer designs it to happen
 • Threads on different cores share a kernel interface object (semaphore, event, mailbox, etc.)
 • Thread creates another thread and schedules it on a different core
 • Threads of different cores share a memory pool
 • In these cases affects limited to the cores in question and not the others.
Safety Nets

• **Built-in Performance Counters**
 • Certain processors have hardware capability to count processor level events.
 • Setup CPU to send interrupt when a particular performance counter threshold is reached.
 • Last level cache miss is a selectable event to be counted.
 • When threshold is hit for a particular partition, a decision can be made on how to deal with the offending partition.
Addressing CAST-32A

- **Safe Scheduling**
 - Addressing aligning applications to minimize contention for shared resources

- **Memory Pooling and Cache Partitioning**
 - Addressing reducing the activity on the memory controller/memory bus by reducing or elimination the need for cache flush and refills.

- **Safety Net**
 - Utilizing the hardware available capability to monitor activity and enable the throttling of the offending application.
Key Performance Differentiators

- Multicore
 - Addresses the objectives in CAST-32A
 - Multicore features implemented in software
 - Significantly reduces porting effort, expands processor coverage, etc.
- Cache partitioning & memory pools
 - Minimize WCET & maximize CPU utilization
 - Reduce interference in single & multi-core systems
 - Simplify verification & certification processes
The Deos RTOS

Overview
Avionics Pedigree
Scheduling Partitioning, RMA & 653
Certified Software Reuse
Data Distribution Service
Multicore and FAA CAST-32A
Security Building Blocks

Additional Features
Development Tooling
Optional: Deterministic & Robust Network

- Deos DAL-A
- Single/Multi-core
- Arm, x86, PowerPC
- User Space Libraries
- Collins V5/V6 (TTTech upcoming)

Data Decoupling and Reconfiguration
- Optional connection to Deos IOI data distribution service
- ARINC-664/AFDX packet data can change without recompiling
- XML configurable, with qualifiable tooling
Optional: ARINC-615 Target Data Loader

- Supports Ethernet, ARINC 664/AFDX, ARINC 429
- DAL A Integrity Library
- Customizable to Specific User Requirements
- Portability via XML Configuration File
- Supports ARM, PowerPC and x86
Optional: Certifiable Fast File System (CFFS)

- DAL-A User Space Module on ARM, PowerPC, or x86
- Single and multicore operation
- Power-fail-safe (journaled)
- Optional ARINC-653 Part 2 API
- Supports mixed DAL applications
- Block oriented high speed transfers
- Portable, with binary & certification reuse (XML configurable)
- Multiple Storage options (e.g., SATA, CFlash, NAND, NOR)
- Protected against non-authorized writes
Optional: POSIX (RTEMS) Library

- Reusable Deos library
- FACE Safety Base POSIX Profile
- Single or multicore operation
- ARM, PowerPC, & x86
- Applications configured via an XML based file, with a qualified checker
- POSIX RTEMS paravirtualized in a Deos time and space partition
 - Priority pre-emptive RTOS
 - RTEMS - Mature, stable, and open source RTOS supporting POSIX since 1990
 - Employed on numerous safety/mission critical military and space applications
- Development environment integrated seamlessly with Deos tool chain
 - Compiler/linker/debugger integrated with DDC-I Open Arbor Eclipse framework
 - Deos profiling tools exhibit POSIX application resource and timing usage
The Deos RTOS

Overview
Avionics Pedigree
Scheduling Partitioning, RMA & 653
Certified Software Reuse
Data Distribution Service
Multicore and FAA CAST-32A
Security Building Blocks
Development Tooling
OpenArbor IDE & Tools

- **OpenArbor IDE**
 - DDC-I’s eclipse-based IDE
 - support for C/C++

- **Development Tools**
 - compiling & debugging
 - gcc 7.3
 - development targets
 - target simulation
 - reference boards
 - ARM, MIPS, PPC, x86

- **Verification Tools**
 - status monitor
 - time map
 - IOI for simulation/test
 - structural coverage
 - qualified verification tools

- **Configuration Tools**
 - XML-based integration
 - Deos kernel, IOI, etc
 - timing analysis

...industry standard eclipse IDE and full toolset for developing, verifying & configuring mission/safety-critical applications.
OpenArbor IDE

- **OpenArbor**
 - DDC-I’s Eclipse-based IDE
 - Connects to command line tools
 (e.g., can be integrated with customer Perl test scripts)

- **Target Interface**
 - Standard: Ethernet & FTP
 - No need to download large apps – quick debug/compile/debug cycles
 - Optional: JTAG

- **Floating FlexNet controlled license**
 - No project restrictions
 - Can be ‘borrowed’ from servers
Compiling & Debugging

• **C/C++*:**
 - GCC – the defacto industry standard, www.gcc.gnu.org
 - Not bound to a proprietary compiler, or specific (older) version.
 - User selectable optimization settings

• **Ada 95 (optional)**

• **Debugger**
 - Full-featured mixed language Eclipse-based debugging
 - Via Ethernet or JTAG
Development Targets

- Virtual target – QEMU
 - Open source processor emulator
 - Supports ARM, MIPS, PPC & x86 instruction sets
 - www.qemu.org

- Reference targets
 - ARM,
 - PowerPC
 - x86
 - MIPS
Third Party Partners

Communications
- Collins Aerospace
- RTI
- TTech
- TwinOaks Computing

COTS Processor Boards
- abaco Systems
- Aitech
- Arrow
- Curtiss-Wright
- Embedded Planet
- Kontron
- MinnowBoard.org
- Mercury Systems
- North Atlantic Industries
- Portwell

Processors
- ALTERA
- AMD Embedded Solutions
- ARM
- Intel Intelligent Systems Alliance
- NXP
- TELEDYNE e2v
- Xilinx

Security
- Mocana
- Star Lab
- wolfSSL

Synergistic Application Software
- CoreAVI
- ENSCO
- HCC Embedded
- LogiCircuit

Tools
- ANSYS
- Lauterbach
- LDRA
- MathWorks
- RAPITA
- Vector Software

Contact DDC-I for respective design reference card BSP availability
Profiler Tools

Status Monitor
- Logs events & exceptions
- Time budgets
- Stack size
- RAM quotas
- Semaphores
- Mutexes
- Mailboxes
- … etc

Time Map
- Graphical timeline display
- Monitors thread execution, interrupts, events & exceptions

- Useful throughout V&V
 - No application instrumentation or system timeline intrusion
 - Exportable (e.g., to .xls)
Deos V&V Tooling Advantage

- Seamless interface
- Profile information gathered from DAL-A kernel
 Information may also be used for app. monitoring, watermarking, etc.
- Profile & debug tools don’t impact application timelines

No instrumented app + no timeline impacts = use in V&V
Configurable I/O & Verification

- **P2 & IOI**
 - same binaries
 - same artifacts
 - reconfigured registry
 - Valid Test Results

...isolates components from I/O volatility & enhances reuse.
Structural Coverage Analysis

- Based on Assembly Branch Coverage
 - Performed at object-code level
 - Demonstrated as equivalent to MC/DC at source-code level
 - No source-object traceability required for DAL A
- No compiler qualification required
- Qualified verification tool
Integration Tool

• For configurable components (e.g., apps, IOI, AFDX, etc.)
• XML-based specification
 • Time budgets
 • Execution rates
 • RAM quotas
 • Resource “ownership”
 • … etc
• Generates binary registry
• Qualified verification tool
 • Checks syntax correctness
 • Enables binary registry
 Correctness to XML specification
WCET Timing Analysis

• Cache Trasher Technology
 1. Cache Trasher puts software under test in the worst-case cache condition (i.e., cache write back)
 2. Use a test set that drives the worst-case paths
 3. Measure the WCET (e.g., with Deos profiler tools), and budget accordingly (e.g., in Deos Integration Registry)

• Critical Time Kernel
 • Measure worst-case target-specific timing
 • Context switch, kernel critical path execution, etc
 Values then inserted in the Deos Integration Registry
Training

• Deos training
 • Deos API
 • BSP & driver development
 • Integration & certification
 • Held at customer site
 • Taught by experienced avionics engineers

… best-in-class training from experienced engineering staff.
Support & Services

- Main channel: support@ddci.com
- Direct access to engineering team
 - 25% of each engineer’s time dedicated to customer support
- Optional on-site support (ideal for start-up & integration phases)
- Defense of certification artifacts
- BSP & driver development
- Consulting engineering

... best-in-class support from experienced engineering staff.
Key Tooling, Test & Support Differentiators

- Floating Dev. License includes all tools
- Tools can be used through V&V (and flight, as applicable)
- Independent of compiler (current version, user sets optimizations)
- Tooling for WCE determination (apps and target)
- Processor emulator enables immediate development
- Identical binaries tested on reference & target HW
- Qualified source & object code coverage tool
- Direct support by DDC-I Engineering
- Training & support
 - Get what you need, when you need it, from people with best-in-class experience – all from a single company focused on avionics.
Summary

• Pedigree
 • Low risk

• RTOS solutions
 • Reuse, features, & performance = low cost of ownership

• Tools
 • Shorter V&V process

• Support, training & services
 • DDC-I’s team augments yours
Thank you!

Contact Information

Laurent Meilleur imeilleur@ddci.com
Theresa Rickman trickman@ddci.com
Gary Gilliland ggilliland@ddci.com

www.ddci.com