RISK MANAGEMENT FOR SAFETY ENGINEERING

PRESENTED TO THE ISSS-TVC JULY 19, 2017

Safety Engineering and Analysis Center A Division of A-P-T Research, Inc. 4950 Research Drive, Huntsville, AL 35805 256.327.3373 | www.apt-research.com

Copyright © 2017 A-P-T Research, Inc.

Course Topics

- Foundations
 - The Language of Risk Management
 - The Math of Risk Management
 - Developing or Deriving the Appropriate Risk Measure
 - History of Modern Risk Management
 - The RAC Matrix
- Risk management is a process, Which process is best?
 - Review Risk Management Processes
 - How Safe is Safe Enough?
 - IARA Process
 - Safety Case Approach

- Discipline Overviews
 - System Safety
 - Reliability
 - Quality Engineering
 - Explosives Safety
 - Launch Safety
 - Software Safety
 - Operational Safety
 - OSHA/ Industrial Safety
 - Cyber Security

Risk Management Process

SAFETY ENGINEERING SEAC & ANALYSIS CENTER

System Safety Engineering The IARA Framework

	Identify Hazards	Assess Risk	Reduce Risk	Accept Risk	
System Safety Process	Use various techniques to systematically identify hazards.	Analyze design. Assess risk.	Reduce risk to acceptable level. Use order of precedence.	Accept residual risk.	
Work	Perform Preliminary Hazard Analyses Review design, test results, procedures, near misses, etc.	Assess probability & severity of each hazard. Identify high risk hazards	Identify controls to reduce severity and/or probability of each hazard	Obtain management decision on all hazards	
Tools & Techniques	Checklists, PHA Energy sources FMEA, O&SHA, Functional HA, Similar systems Accident experience Hazard Tracking System (HTS)	Fault Tree, Event tree, Probabilistic RA Risk Acceptance Matrix, HTS SSWG	Design selection Design alteration Engineered safety features Safety devices Warning devices Procedures/Training	SSRA RAC Matrix Balance risk and benefits	
Products	Hazard Analyses, PHL, PHA Populated HTS	HTS with risk levels SSWG minutes	Hazard list with acceptable risk levels	Risk acceptance documentation	

Risk Management Applies to Multiple Disciplines							
System Safety	SVSIDIN .		Reliability	Operational Risk Mgmt	Occupational Safety		
System Safety	Software System Safety	Explosives Safety	Reliability (in development)	Operational Risk Mgmt (in development)	Occupational Safety (in development)		

Course Objectives

- Gain working knowledge of risk management as the overarching methodology for all Safety and Mission Assurance (SMA) and related disciplines (system safety, explosives safety, range safety, software safety, reliability, quality, operational risk management, industrial safety, etc.)
- Identify areas where cross fertilization and cross utilization between disciplines can be fruitful
- Gain ability to identify the best risk metrics
- Gain ability to apply risk methods in all SMA disciplines
- Provide forum to discuss real case studies and current work problems
- Provide sources of reference for Risk Management and related topics

THE LANGUAGE OF RISK MANAGEMENT A-P-T RESEARCH, INC.

Safety Engineering and Analysis Center A Division of A-P-T Research, Inc. 4950 Research Drive, Huntsville, AL 35805 256.327.3373 | www.apt-research.com

Copyright © 2017 A-P-T Research, Inc.

What are the lessons from this module?

- The language of <u>risk</u> management is so imprecise that as safety professionals, we <u>risk</u> failure to communicate about <u>risky</u> situations unless we take the precaution to avoid <u>risks</u> by using concise <u>risk</u> language.
- 2. Words matter. Every riskmanagement program should have:
 - 1. A clearly stated purpose and goal
 - 2. Clear, concise, and complete definitions of "risk" and "risk management" as used by your organization.

Sometimes the safety professional is well-served to go through the four steps of good communication.

SAFETY ENGINEERING

HISTORY OF MODERN RISK MANAGEMENT A-P-T RESEARCH, INC.

Safety Engineering and Analysis Center A Division of A-P-T Research, Inc. 4950 Research Drive, Huntsville, AL 35805 256.327.3373 | www.apt-research.com

Copyright © 2017 A-P-T Research, Inc.

What is a Decision Matrix

- Pascal's Wager was the first known decision matrix, a 2×2.
- Risk analysts use decision matrices to clarify and communicate risk-based decisions.
- Matrices can be 2×2 or much larger.

When the best decision is not obvious, this simple tool helps clarify:

- 1. What is the best risk mitigation?
- 2. Should the risk be accepted?

Important Historical Developments in Safety Engineering

Devel	opment	How Used			
1660	Pascalian methods	Provided risk concept, scientific method, decision matrices, dendritic methods, careful language			
1700	Proportional logic and scientific notation	Tools to manage, calculate, and communicate			
1731	Probability and statistics developed the concept of "expected value"	The most logical, single basis for decision making and communication			
1733	Standard deviation developed	Examines variation about expected value			
1809	Central limit theorem	Large samples tend toward the center			
1830	Prudent man rule	Common sense should prevail			
1848	Gaussian normal curve	Mathematical treatments for probability distributions			
1880	Natural causes of uncertainty	Natural existence of uncertainty			
1936	Uncertainly alters expected value	The shape of the distribution changes the mean			
1966	Safety engineering becomes recognized discipline	Universities recognize discrete aspects and perspectives of safety			
1967, '79, '86 Apollo, Three Mile, Challenger		The nation's perspective became more cautious			
1980s	Modeling uncertainty & QRAs, Risk Assessment Matrix, ALARP	Epistemic and aleatory uncertainty, math/computer modeling, RAC in vogue, ALARP legally recognized			
Risk S	Summing	Total system risk vs. hazard risk			
Safety	Case Approach	This system is safe because Now prove it with objective evidence.			

RISK MANAGEMENT PROCESSES A-P-T RESEARCH, INC.

Safety Engineering and Analysis Center A Division of A-P-T Research, Inc. 4950 Research Drive, Huntsville, AL 35805 256.327.3373 | www.apt-research.com

Copyright © 2017 A-P-T Research, Inc.

Other Published Methods

- 1. Identify the risks
- 2. Identify the causes
- 3. Identify the controls
- 4. Establish likelihood and consequence descriptions
- 5. Establish risk-rating descriptions
- 6. Add other controls
- 7. Make a decision
- 8. Monitor and review
- -- Southern Cross University
- 1. Identify
- 2. Analyze and prioritize
- 3. Plan and schedule
- 4. Track and report
- 5. Control
- 6. Learn
- -- Microsoft Library

- 1. Identify issues
- 2. Identify risks
- 3. Risk analysis
- 4. Risk treatment
- -- Central and Eastern Europe Nuclear Energy Policy
- 1. Identify the risk
- 2. Analyze the risk
- 3. Evaluate or rank the risk
- 4. Treat the risk
- 5. Monitor and review
- -- RM Online

1. Identify potential risks

8

- 2. Measure frequency and severity
- 3. Examine all alternative solutions
- 4. Decide which solution
- 5. Monitor results
- -- "Clear Risk"

Many methods can be found on the Internet.

SAFETY ENGINEERING

ANALYSIS CENTER

HOW SAFE IS SAFE ENOUGH? A-P-T RESEARCH, INC.

Safety Engineering and Analysis Center A Division of A-P-T Research, Inc. 4950 Research Drive, Huntsville, AL 35805 256.327.3373 | www.apt-research.com

Copyright © 2017 A-P-T Research, Inc.

Road Signs for Risk Space

- References
- "Road Signs in Risk-Space", Tom Pfitzer, Bill Pfitzer, Meredith Hardwick; Briefing; August 2004
 - Pfitzer, T., M. Hardwick, B. Pfitzer, "Are All Risk Criteria Created Equal and Used Equally? Proposed QRA Standards for Risk Management," DoD Explosives Safety Seminar, August 2004, CE1-09600.

Road Signs

A Collection of Caution Signs

THE RAC MATRIX A-P-T RESEARCH, INC.

Safety Engineering and Analysis Center A Division of A-P-T Research, Inc. 4950 Research Drive, Huntsville, AL 35805 256.327.3373 | www.apt-research.com

Copyright © 2017 A-P-T Research, Inc.

Those Subjective Scales

They lack engineering appeal, but are widely used in many fields...

- Accuracy of subjective judgments vary widely with the skill and experience of the individual.
- The ability to subjectively judge difference increases with corresponding anchor point and quantitative tools allowing judgement to become highly calibrated.

APT Risk Management Scales

 We define an 10-step risk scale for likelihood and risk separated by half order of magnitudes, including: very likely (>3E-1), likely, high, moderate, possible, low, very low, unlikely, extremely unlikely, and near zero (<1E-5)

Qualitative	Very Likely	Likely	High	Moderate	Possible	Low	Very Low	Unlikely	Extremely Unlikely	Near Zero
Quantitative	>3E-1	1E-1	3E-2	1E-2	3E-3	1E-3	3E-4	1E-4	3E-5	<1E-5

Course Topics

- Day 1 Foundations
 - 1A: The Language of Risk Management
 - ► 1B: The Math of Risk Management
 - 1C: Developing or Deriving the Appropriate Risk Measure
 - 1D: History of Modern Risk Management
 - 1E: The RAC Matrix
- Day 2 Risk management is a process, Which process is best?
 - 2A: Review Risk Management Processes
 - 2B: How Safe is Safe Enough?
 - 2C: IARA Process
 - 2D: Safety Case Approach
- Day 3 Other Useful Processes
 - ► 3A: Discipline 1: System Safety
 - ▶ 3B: Discipline 2: Reliability

- Day 4 Discipline Overviews (cont'd)
 - ► 4A: Discipline 3: Quality Engineering

- ► 4B: Discipline 4: Explosives Safety
- 4C: Discipline 5: Launch Safety
- ▶ 4D: Discipline 6: Software Safety
- Day 5 Discipline Overviews (cont'd)
 - 5A: Discipline 7: Operational Safety
 - ► 5B: Discipline 8: OSHA/ Industrial Safety
 - Quiz