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Abstract 

Industry standard methods for hardware and operations risk assessments include hazard severity and hazard 

likelihood in risk predictions.  Software “hazard” assessments include the same hazard severity employed in 

hardware and operations risk assessments, but use software control authority in lieu of failure likelihood (ref. 1) to 

determine a software safety assurance rather than a “risk”.  Since risk is estimated by the combination of event 

severity and likelihood, hazard assessments for software do not result in “risk”.  In the absence of a software risk, it 

is difficult to characterize the system level risk as a composite of hardware, operations, and software risk.  To 

correct this deficiency, a qualitative estimate for the likelihood of software safety failures is needed.  Attempts to 

determine the quantitative “failure probability” of software have not resulted in wide acceptance or consistent 

application.  This paper presents an estimation formalism based on a fuzzy logic approach to software risk 

estimation.  This approach utilizes current accepted software safety processes so that a fuzzy estimate for software 

safety failure likelihood can be combined with severity category to estimate software contribution to system level 

risk. 

Overview 

Risk is the product of hazard severity and event likelihood (ref. 2).  Industry standard methods have been developed 

for hazard risk assessment.  These methods are used for hazard risk assessments of hardware failures and operations 

errors.  Standard hazard assessments include both the hazard severity and the event likelihood risk components.  

However, estimating software “risk” is not a standard activity in software hazard assessments (ref. 3).  Predicting 

system level risk in terms of the composite of hardware, operations, and software risks is a desirable, but difficult 

objective, given the absence of a true software risk assessment (see Figure 1).  This paper proposes a method to 

address the software risk assessment deficiency in the system level risk assessment.  A fuzzy logic based approach is 

employed to develop a qualitative likelihood of software safety failures.  This qualitative likelihood is then 

combined with hazard severity to produce a fuzzy software risk level estimate that is qualitatively similar to the 

hardware and the operations risks levels (e.g. High, Medium, Low) (ref. 4).  The hazard severity risk component is 

assumed to be developed from analysis performed prior to initiating the FLARE process.  FLARE is then employed 

to estimate the missing software risk component - the likelihood of a software safety failure event (see Figure 2).  

The FLARE process is currently being assessed using actual system and safety data. 

Assessing hazard severity in linguistic terms (e.g. catastrophic, critical, etc.) is a straightforward activity (ref. 4).  

However, estimating the likelihood of a software safety failure in a Safety Significant Function (SSF) is not a trivial 

process (ref. 3).  Software safety assessments are historically not probabilistic in nature.  They are based on 

individual decisions analysts make.  The assessment is evidence/artifact driven and it reflects the analyst’s 

confidence or belief in the “goodness” of the software’s safety characteristics (ref. 5) relating to software failures.  

The analyst’s confidence or belief is then the basis for developing risk likelihood.  The Software System Safety 

discipline has adopted a safety assessment process for analysts that use both software hazard analysis objectives and 

software development objectives that are designed to reduce the likelihood of software safety failures (refs. 6, 7).  

These are the analyst’s primary evidence/artifacts and they are used to increase/decrease the analyst’s belief that the 



 

software has reduced/increased likelihood of failure.  Prior to addressing the concepts associated with the analyst’s 

belief, there are some common definitions that require a quick review. 

Different analysis and development objectives are required depending on the SSF hazard criticality.  The hazard 

criticality is defined by the Software Criticality Index (SwCI).  SwCI Level A is the highest hazard criticality index 

level and results in the most rigorous development effort.  SwCI Level D is the lowest hazard criticality index level 

and results in the least rigorous development effort.  SwCI Level E classifies software as not having any impact on 

safety or mission success (ref. 8). 

 

Figure 1:  Current System Safety Process 

 

Figure 2:  Proposed System Safety Process 

The set of hazard analysis and software development objectives prescribed by a given SwCI linguistic category (e.g. 

A, B, C, or High, Medium, Low) presently produce necessary and sufficient evidence to prove to the safety 

personnel that the software safety assurance meets the SwCI safety goals for the category.  The software safety 

analyst is responsible for assessing the veracity of the evidence submitted as proof.  Several assessment guidelines 

are available (Refs. 1, 6, 9, 10).  Uncertainties in the assessment process may be due to: (1) human factors, e.g. 

insufficient peer review, informal analyst training, lack of analyst experience, and diversity of analyst pass/fail 

perceptions, how evidence ambiguity is treated, and (2) inadequate data, e.g. poor software hazard analyses, 



 

incomplete software development processes, poor requirements development/traceability, ambiguous presentations.  

These sources of uncertainty are not addressed in the FLARE process.  Instead, FLARE, focuses on standardizing 

the aggregation of the assessment results from individual evidence items and analyses.  FLARE is based on the 

perception that the analyst’s assessment findings portray his/her “belief” that the desired software safety assurance 

has been achieved, which in turn is based on the analyst’s “belief” in how much the software safety assurance is 

supported by his/her assessment of the efficacy of the evidence to provide assurance that identified hazards have 

been mitigated.  Therefore, the analyst’s “belief” in software safety assurance is assumed to be a qualitative estimate 

of the likelihood for a safe response to software errors.  This assumption is stated in the following foundational 

FLARE axiom: 

The analyst’s “belief” in software safety assurance is a qualitative estimate for 

likelihood of software safety failure. 

FLARE does not specify how the safety analyst must reach their assessment only that they can and do make such an 

assessment.  Instead, the challenge for FLARE is to formalize a process which maps the analyst’s cognition, as it 

relates to belief in software safety assurance, to bounded likelihood categories so that likelihood of an event can be 

qualitatively described in linguistic terms such as “frequent”, “occasional”, or “improbable”.  These linguistic terms 

are then modeled as fuzzy numbers to form the basis for FLARE as described in the next section. 

FLARE Introduction 

Fuzzy numbers [ref. 11] represent a possibility distribution [ref. 12] over a real number line.  Possibility 

distributions capture what is possible versus what is probable.  As such, possibility is less “constraining” than 

probability.  However, in cases where probability is not available, possibility theory offers a framework to model the 

data limitations and manipulate them to develop boundaries for decisions.  FLARE employs fuzzy numbers to model 

the analyst’s beliefs.  These fuzzy numbers are manipulated by fuzzy logic to arrive at bounded decisions.  As 

always, the extent of the bounds is driven by the bounds on the data and the processing of the data.  Therefore, the 

FLARE process does not “magically” provide “good” decisions from an imperfect data set, merely traceable 

possibility boundaries. 

Fuzzy logic concepts and operations employed in FLARE help to characterize and manage the qualitative 

characteristics found in software safety assessments.  The FLARE process then associates qualitative belief in 

software safety assurance to a Software Risk Possibility (SRP) matrix.  FLARE provides a method for “assessment 

of confidence” by the analyst for each safety-significant requirement and function as required by MIL-STD-882E 

(ref. 5).  Confidence in this context is not the same as the mathematical confidence interval commonly used in 

probability and statistics.  Here, it is a qualitative measure of analyst “belief” that satisfactory compliance with 

specific objectives will improve the “software safety goodness”, and thereby reduce the likelihood of software safety 

failures.  For the remainder of this paper, we will use “belief” in lieu of “confidence” to avoid confusion with 

probability terminology. 

The FLARE results represent a qualitative estimate of the software contribution to system-level risk.  FLARE is 

based on the following assumptions:  (1) As each SwCI objective is completed, with sufficient quality, software 

safety assurance is increased/decreased, which directly correlates to an increased belief in a safe/unsafe response to 

software errors; (2)  Completion of all the prescribed objectives for a given SwCI, with sufficient quality, will 

represent all due diligence required to result in the desired software safety assurance; (3) The qualitative estimate for 

likelihood of software safety failures depends on the specific objectives completed, the quality of the evidence, and 

the objective’s contribution to software safety assurance. 

The FLARE process has three high level steps (see Figure 3): 

(1) Scoring objectives: Each compliance evidence artifact, of which there may be multiples, is assessed against the 

SwCI objective’s requirements.  Three assessment criteria are used for each artifact:  (a) Completeness, (b) Quality, 

and (c) Contribution.  Completeness is an assessment of the percentage of key information provided by each of the 

evidence artifacts.  If combining scores for individual artifacts is a requirement, this then provides an assessment of 

the objective’s completeness based on all the evidence.  Quality is an assessment of the goodness of each artifact.  

Combining the evidence assesses the quality of the evidence supporting the completion of the objective.  The 



 

Contribution criteria is an assessment of what extent the objective contributes to changing the likelihood of software 

safety failures. 

(2) Processing Scores: The scores for each SwCI objective are numeric based inputs.  These inputs are processed 

through a fuzzy logic transformation system to result in a range of possible values for the likelihood- Likelihood 

Range (P). 

(3) Estimating Risk Possibility: The Likelihood Range is paired with the SSF’s hazard severity category to 

estimate the Software Risk Possibility (SRP) (e.g. High, Medium, or Low). 

 

Figure 3: FLARE Process 

Using FLARE 

This section illustrates the FLARE method using the following information set: 

Hazard Description: 

Source:  Failure condition that prevents continued safe flight and landing, or results in 

loss of aircraft. 

Mechanism:  Undetected incorrect flight information. 

Outcome:  Death or permanent total disability; system loss  

Software Contribution:  Yes 

Severity Category:  Catastrophic 

Software Control Category:  Autonomous 

Software Hazard Criticality Index:   High (1[I]) 

Level-Of-Rigor (LOR):  High (or SwCI-A) (requires significant analysis and testing resources) 

The Program Manager Handbook for Flight Software Airworthiness (Ref. 13) provides SwCI objectives that must 

be fulfilled.  Our example data would require all 108 possible objectives be accomplished to ensure SwCI-A 

compliance.  In this context, compliance means complete and high quality evidence/artifacts that establish levels of 

belief that software error leading to software safety failures have been eliminated or acceptably mitigated.  The 

FLARE process is used to evaluate each objective independently.  For brevity, only three objectives are shown in 

Table 1 and only one is further examined here. 

Score the objectives:  As discussed in the previous section the analyst scores the objectives for Completeness, 

Quality and Contribution.  The assessment could be in linguistic terms (e.g. bad, okay, great) or exact values or 

interval based values (e.g. between 20 and 30%).  All of these expressions of assessment can be represented as fuzzy 



 

numbers.  The FLARE process example illustrates with exact values.  Three example objectives are scored in Table 

1. 

Table 1: Scoring Example 

List of Objectives 

DAL 

Level 

Complete 

(%) 

Quality 

(%) 

Contribution 

(%) 

Integrated master schedule for the system/software 

development is established A 25 50 15 

FHA is developed A 64 28 84 

System safety requirements are traceable to the FHA A 30 45 95 

For the remaining steps in the FLARE description, the example test case only considers a single SwCI objective, 

“FHA is developed”.  The associated scores are: Completeness = 64%, Quality = 28%, and Contribution = 84%.  In 

order to understand the elements of fuzzy numbers and fuzzy logic used in FLARE, the following brief section 

discusses some background fuzzy logic concepts that are used in processing these scores. 

Background Concepts: 

Fuzzy sets and fuzzy numbers are used to represent possible values either as discrete items in a set or as continuous 

numeric values.  The idea of what is possible is important to FLARE since there is some research (ref. 14) that 

suggests that analysts assess possibilities in problems with uncertainty.  Given that FLARE uses analyst 

assessments, representing and manipulating possibility seems natural.  Fuzzy logic provides methods for performing 

logical operations on these fuzzy values and a fuzzy calculus can provide methods for performing math operations 

on fuzzy numbers.  Each fuzzy set can be identified by a linguistic variable scale to facilitate human interaction.  

Odd numbers of values in the scales are used to permit a middle ground to be stated.  FLARE utilizes linguistic 

values to characterize five key variables with 5 possible values in each scale: three are input variables, one is an 

intermediate variable, and one is an output variable.  The input variables are Completeness (X), Quality (Y), and 

Contribution (Z).  The intermediate variable is Belief (T) and the output variable is Likelihood Range (P).  Each 

linguistic variable can have a defined set of values such as are described below: 

Completeness = [Mostly Incomplete, Some Information, Some Key Information, Most Key Information, All 

Key Information] 

Quality = [Inferior, Below Average, Average, Above Average, Superior] 

Contribution = [Very Small, Small, Moderate, Large, Very Large] 

Belief = [Very Low, Low, Medium, High, Very High] 

Likelihood Range = [Frequent, Probable, Occasional, Remote, Improbable] 

Using human analyst oriented value ranges described using words like those above or words like “Small” and “Very 

Small” gives a relative association without defining hard boundaries.  However, in order to make these relative 

associations meaningful, they must be associated with numeric sub-ranges of possible values that match reasonable 

responses from the linguistic population, i.e. the analysts.  Representation of these responses is accomplished 

through the development of a range of possible numeric values for each linguistic value.  In fuzzy logic, this range 

of possible values is represented by the membership function.  Thus the membership function relates the members of 

a given linguistic value on a numeric value scale. 

In the case of the input variables, Completeness, Quality, & Contribution, the fuzzy value sub-ranges are taken from 

the full range of possible compliance scores (i.e. 0% to 100%).  An example membership function for Completeness 

= “Some Key Information” is shown in Figure 4.  Note that the “Some Key Information” membership function will 

only respond to the sub-range of analyst’s estimates of Completeness scores ranging from 30% to 70%.  The shape 

of this membership function is not a square or rectangle of abrupt change because this function represents a 

decreasing possibility of membership in “Some Key Information” as the values move away from 50%. 



 

Figure 4 

It must be noted that the degree-of-membership does not represent a “percentage”.  Rather it maps a set of values 

with their possibility or degree of “belonging” to a value in a linguistic set value.  A degree-of-membership of zero 

(0) denotes complete absence of membership in a specific linguistic “value” while a degree of one (1) represents full 

membership in the linguistic set value. 

Processing scores:  Continuing with the exact value analysis, Figure 5, Figure 6, and Figure 7 show the example 

values from the previous section plotted on their respective membership functions to show the relationship of 

specific numeric values to membership functions. 

 

Figure 5 

 

Figure 6 

 



 

 

Figure 7 

Table 2 summarizes the results of the degree-of-membership plots: 

Table 2: Degree of Membership 

Linguistic 

Variable 

Analyst 

Score Value Linguistic Set Values 

Degree-of-

Membership 

Completeness 64% Some Key Information 0.3 

64% Most Key Information 0.7 

Quality 28% Inferior 0.1 

28% Below Average 0.9 

Contribution 84% Large 0.3 

84% Very Large 0.7 

Examine the Completeness variable.  Note that the Completeness variable has a degree of membership of 0.3 that 

completeness is described by the linguistic value “Some Key Information”.  It also has a degree of membership of 

0.7 that Completeness is described by “Most Key Information”.  FLARE must account for both possible values. 

FLARE uses a fuzzy “rule” approach vice a fuzzy numeric approach to accomplish this. The “rules” describe 

relationships between values and linguistic variables. 

FLARE rules use the “IF antecedent THEN consequent” rule format to relate the linguistic variables.  Note that 

FLARE currently does not use a belief in the rule implication itself, which is distinct from the belief in the data.  

Here are example rules employed to relate the linguistic variables: 

1. If Completeness = X and Quality = Y then Belief = T 

2. If Contribution = Z and Belief = T then Likelihood_Range = P 

The possible linguistic values for X, Y, Z, T, and P are defined from the respective fuzzy sets for each linguistic 

variable.  Numeric values for X, Y, and Z are determined using the membership functions as shown in Figures 5, 6, 

and 7 above.  Linguistic values for T and P are determined using the Belief and Likelihood Range rule matrices (see 

Table 3and Table 4).  The Belief rule matrix maps Completeness and Quality values to Belief values. 

Using the associations from the Belief rule matrix the following rules are derived for the example data.  Values in 

parentheses are specific degree-of-membership values. 

If Completeness = Some Key Information (0.3) and Quality = Inferior (0.1) then Belief = Very Low (0.1) 

If Completeness = Most Key Information (0.7) and Quality = Inferior (0.1) then Belief = Very Low (0.1) 

If Completeness = Some Key Information (0.3) and Quality = Below Average (0.9) then Belief = Low (0.3) 

If Completeness = Most Key Information (0.7) and Quality = Below Average (0.9) then Belief = Low (0.7) 



 

Table 3: Analyst’s Belief Rule Matrix 

Belief (T) 

Completeness (X) 

Mostly 

Incomplete 

Some 

Information 

Some Key 

Information 

Most key 

Information 

All Key 

Information 

Q
u

a
li

ty
 (

Y
) Inferior VL VL VL VL VL 

Below Average VL L L L L 

Average VL L M M M 

Above Average VL L M H H 

Superior VL L M H VH 

Very Low (VL), Low (L), Medium (M), High (H), Very High (VH) 

The Likelihood Range rule matrix maps the Belief and Contribution values to the Likelihood Range values. 

Table 4: Likelihood Range Rule Matrix 

Likelihood Range (P) 

Belief (T) 

Very Low Low Medium High Very High 

C
o

n
tr

ib
u

ti
o

n
 

(Z
) 

Very Small O R R R I 

Small O O R R I 

Moderate P O O R I 

Large P P O R I 

Very Large F P O R I 

Frequent (F), Probable (P), Occasional (O), Remote (R), Improbable (I) 

The Likelihood Range rules are shown below: 

If Belief = Very Low (0.1) and Contribution = Large (0.3) then Likelihood Range = Probable (0.1) 

If Belief = Very Low (0.1) and Contribution = Very Large (0.7) then Likelihood Range = Frequent (0.1) 

If Belief = Low (0.3) and Contribution = Large (0.3) then Likelihood Range = Probable (0.3) 

If Belief = Low (0.3) and Contribution = Very Large (0.7) then Likelihood Range = Probable (0.1) 

If Belief = Low (0.7) and Contribution = Large (0.3) then Likelihood Range = Probable (0.3) 

If Belief = Low (0.7) and Contribution = Very Large (0.7) then Likelihood Range = Probable (0.7) 

Figure 8 now shows the membership functions for Likelihood Range.  Note that this is a decreasing value size 

logarithmic scale on the positive X-axis.  The sub-ranges for the membership functions are derived from MIL-STD-

882 (ref. 15). 

 

Figure 8 



 

From the Likelihood Range membership functions, a composite membership polygon is created.  The individual 

modified membership functions (see Figure 9) create membership polygons which are combined to form a 

composite membership polygon (see Figure 10).  The highest membership of the “Frequent” value is 0.1 and for the 

“Probable” value is 0.7.  No other membership functions were intersected.  The composite membership polygon is 

the dotted black line in Figure 10. 

 

Figure 9 

Figure 10 

The FLARE process uses a conservative approach and chooses the Likelihood Range value with the highest degree-

of-membership, i.e. the most possible, to estimate the likelihood for software safety failure.  If the degrees-of-

membership are equal, FLARE chooses the left-most membership function (highest likelihood) on the graph.  The 

result for the example data is Likelihood Range = “Probable” (see Table 5). 

Table 5: Likelihood Range 

List of Objectives LOR Complete (%) Quality (%) Contribution (%) Likelihood Range (P)_ 

FHA is developed A 64 28 84 Probable 

 



 

Estimating Risk Possibility:  In order to express this likelihood in terms of qualitative risk the likelihood must be 

paired with the SwCI severity.  The FLARE team is currently examining approaches for this calculation.  This 

section discusses one approach currently being evaluated. 

Using Likelihood Range value “Probable” and the Severity Category of “Catastrophic” from the example data the 

Software Risk Possibility (SRP) is 1B (see Table 6 and Table 7).  The color coding in the SRP table corresponds to 

risk acceptance levels High (red), Serious (orange), Medium (yellow), and Low (green). 

Table 6: Software Risk Possibility 

Software Risk 

Possibility (SRP) 

Likelihood Range (P) 

Frequent 

(A) 

Probable 

(B) 

Occasional  

( C ) 

Remote 

(D) 

Improbable 

(E) 

S
H

C
I 

S
ev

er
it

y
 Catastrophic (1) 1A 1B 1C 1D 1E 

Critical (2) 2A 2B 2C 2D 2E 

Marginal (3) 3A 3B 3C 3D 3E 

Negligible (4) 4A 4B 4C 4D 4E 

 

Table 7: Qualitative Risk 1 

List of 

Objectives 

DAL 

Level 

Complete 

(%) 

Quality 

(%) 

Contribution 

(%) 

Likelihood 

Range SRP 

Qualitative 

Risk 

FHA is 

developed A 64 28 84 Probable 1B High 

Using the FLARE process allows the compliance evidence for each SwCI objective to be assessed independently 

from all other SwCI objectives.  This in turn allows the analyst to portray the specific SwCI objectives which need 

the most attention.  For example, if all the SwCI objectives for the example hazard information are assessed the 

results would provide the SRP value and qualitative risk for each objective.  The qualitative software risk 

information can be portrayed with intrinsic resource allocation priorities for risk reduction activities.  In Table 8 we 

assume two out of the 108 SwCI-A objectives contribute “Frequent” likelihood of software safety failures and 106 

objectives contribute “Improbable” likelihood.  Since “Catastrophic” severity and “Frequent” likelihood indicate the 

overall risk is “High”, the program office (PO) will need to reduce the “Frequent” likelihood for two specific 

objectives to the “Improbable” range in order to accept the residual risk without higher command approval.  With 

this method, the PO can target unique risk reduction actions to specific SwCI objectives based on the analysis 

details. 

Table 8: Software Risk Category 

 

All the Likelihood Range values in the example need to be “Improbable” at the least in order to lower the overall 

qualitative SRP to Medium (yellow colored blocks in Table 8).  Table 9 shows the risk gaps in terms of percent 

Complete and percent Quality. 

Software Risk 

Category (SRC) 

Likelihood Range (P) 

Frequent 

(A) 

Probable 

(B) 

Occasional  

( C ) 

Remote 

(D) 

Improbable 

(E) 

S
H

C
I 

S
ev

er
it

y
 Catastrophic (1) 2 0 0 0 106 

Critical (2) 0 0 0 0 0 

Marginal (3) 0 0 0 0 0 

Negligible (4) 0 0 0 0 0 



 

Table 9: Qualitative Risk 2 

List of 

Objectives 

DAL 

Level Complete (%) Quality (%) 

Contribution 

(%) 

Likelihood 

Range SRP 

Qualitative 

Risk 

FHA is 

developed A 

Increase score 

from 64 to 81 

Increase score 

from 28 to 81 84 Improbable 1E Medium 

The Completeness and Quality gaps are now known in terms of percent.  This knowledge must be transitioned into 

actions that close or minimize the compliance gaps.  Since the analyst has already reviewed the SwCI compliance 

evidence it is assumed the analyst kept a log of the review.  The log may look similar to Table 10.  From the 

information contained in the review log the analyst can very specifically identify recommendations to assist the 

developer in providing the necessary compliance evidence that would lead to achieving the desired risk category. 

Table 10: Analyst’s Log 

# Date Page Section Paragraph Comment Text      

(Provide clear 

succinct comments) 

Recommendation 

(Must provide recommended 

rewording or appropriate solution) 

Rationale Comment       

Initiator 

                  

Summary and Future Directions 

The FLARE process incorporates and uniquely handles four difficult issues that plague software system safety 

hazard analyses: (1) estimating software failure probability is very difficult and expensive, (2) decisions are 

subjective, (3) data are imprecise, and (4) software safety risk is never quantified or qualified.  Two key advantages 

of FLARE are specific (highly focused) risk reduction activities can be recommended to the PO and/or developer 

and qualitative software risk estimates can be compared on par with hardware and operations risk estimates.  Almost 

every step in the FLARE process can be tailored to a program’s unique requirements and the FLARE process is 

easily automated. 

During the development of the basic FLARE process, the team encountered several items that require additional 

examination.  Among the high interest items are the analyst’s belief in the rules and membership functions stated 

previously.  This is distinct from the belief in the data sets and it requires additional steps to account for this factor.  

These steps are not addressed in this paper and require further research.  A second high interest item is utilization of 

a fuzzy mathematical approach as an alternative to the rule based approach presented in this paper. 
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