

Software Risk Assessment: Fuzzy Logic Approach to Risk Estimation (FLARE)

Willie Fitzpatrick, PhD; US Army AMRDEC Software Engineering Directorate; Redstone Arsenal, AL, USA

David Skipper, PhD; SAIC; Huntsville, AL, USA

Josh McNeil; US Army AMRDEC Software Engineering Directorate; Redstone Arsenal, AL, USA

J.P. Rogers; APT Research, Inc.; Huntsville, AL, USA

Keywords: Possibility Theory, Fuzzy Logic, System Safety, Airworthiness, Software Safety, Risk Assessment,

Software Risk Assessment

Abstract

Industry standard methods for hardware and operations risk assessments include hazard severity and hazard

likelihood in risk predictions. Software “hazard” assessments include the same hazard severity employed in

hardware and operations risk assessments, but use software control authority in lieu of failure likelihood (ref. 1) to

determine a software safety assurance rather than a “risk”. Since risk is estimated by the combination of event

severity and likelihood, hazard assessments for software do not result in “risk”. In the absence of a software risk, it

is difficult to characterize the system level risk as a composite of hardware, operations, and software risk. To

correct this deficiency, a qualitative estimate for the likelihood of software safety failures is needed. Attempts to

determine the quantitative “failure probability” of software have not resulted in wide acceptance or consistent

application. This paper presents an estimation formalism based on a fuzzy logic approach to software risk

estimation. This approach utilizes current accepted software safety processes so that a fuzzy estimate for software

safety failure likelihood can be combined with severity category to estimate software contribution to system level

risk.

Overview

Risk is the product of hazard severity and event likelihood (ref. 2). Industry standard methods have been developed

for hazard risk assessment. These methods are used for hazard risk assessments of hardware failures and operations

errors. Standard hazard assessments include both the hazard severity and the event likelihood risk components.

However, estimating software “risk” is not a standard activity in software hazard assessments (ref. 3). Predicting

system level risk in terms of the composite of hardware, operations, and software risks is a desirable, but difficult

objective, given the absence of a true software risk assessment (see Figure 1). This paper proposes a method to

address the software risk assessment deficiency in the system level risk assessment. A fuzzy logic based approach is

employed to develop a qualitative likelihood of software safety failures. This qualitative likelihood is then

combined with hazard severity to produce a fuzzy software risk level estimate that is qualitatively similar to the

hardware and the operations risks levels (e.g. High, Medium, Low) (ref. 4). The hazard severity risk component is

assumed to be developed from analysis performed prior to initiating the FLARE process. FLARE is then employed

to estimate the missing software risk component - the likelihood of a software safety failure event (see Figure 2).

The FLARE process is currently being assessed using actual system and safety data.

Assessing hazard severity in linguistic terms (e.g. catastrophic, critical, etc.) is a straightforward activity (ref. 4).

However, estimating the likelihood of a software safety failure in a Safety Significant Function (SSF) is not a trivial

process (ref. 3). Software safety assessments are historically not probabilistic in nature. They are based on

individual decisions analysts make. The assessment is evidence/artifact driven and it reflects the analyst’s

confidence or belief in the “goodness” of the software’s safety characteristics (ref. 5) relating to software failures.

The analyst’s confidence or belief is then the basis for developing risk likelihood. The Software System Safety

discipline has adopted a safety assessment process for analysts that use both software hazard analysis objectives and

software development objectives that are designed to reduce the likelihood of software safety failures (refs. 6, 7).

These are the analyst’s primary evidence/artifacts and they are used to increase/decrease the analyst’s belief that the

software has reduced/increased likelihood of failure. Prior to addressing the concepts associated with the analyst’s

belief, there are some common definitions that require a quick review.

Different analysis and development objectives are required depending on the SSF hazard criticality. The hazard

criticality is defined by the Software Criticality Index (SwCI). SwCI Level A is the highest hazard criticality index

level and results in the most rigorous development effort. SwCI Level D is the lowest hazard criticality index level

and results in the least rigorous development effort. SwCI Level E classifies software as not having any impact on

safety or mission success (ref. 8).

Figure 1: Current System Safety Process

Figure 2: Proposed System Safety Process

The set of hazard analysis and software development objectives prescribed by a given SwCI linguistic category (e.g.

A, B, C, or High, Medium, Low) presently produce necessary and sufficient evidence to prove to the safety

personnel that the software safety assurance meets the SwCI safety goals for the category. The software safety

analyst is responsible for assessing the veracity of the evidence submitted as proof. Several assessment guidelines

are available (Refs. 1, 6, 9, 10). Uncertainties in the assessment process may be due to: (1) human factors, e.g.

insufficient peer review, informal analyst training, lack of analyst experience, and diversity of analyst pass/fail

perceptions, how evidence ambiguity is treated, and (2) inadequate data, e.g. poor software hazard analyses,

incomplete software development processes, poor requirements development/traceability, ambiguous presentations.

These sources of uncertainty are not addressed in the FLARE process. Instead, FLARE, focuses on standardizing

the aggregation of the assessment results from individual evidence items and analyses. FLARE is based on the

perception that the analyst’s assessment findings portray his/her “belief” that the desired software safety assurance

has been achieved, which in turn is based on the analyst’s “belief” in how much the software safety assurance is

supported by his/her assessment of the efficacy of the evidence to provide assurance that identified hazards have

been mitigated. Therefore, the analyst’s “belief” in software safety assurance is assumed to be a qualitative estimate

of the likelihood for a safe response to software errors. This assumption is stated in the following foundational

FLARE axiom:

The analyst’s “belief” in software safety assurance is a qualitative estimate for

likelihood of software safety failure.

FLARE does not specify how the safety analyst must reach their assessment only that they can and do make such an

assessment. Instead, the challenge for FLARE is to formalize a process which maps the analyst’s cognition, as it

relates to belief in software safety assurance, to bounded likelihood categories so that likelihood of an event can be

qualitatively described in linguistic terms such as “frequent”, “occasional”, or “improbable”. These linguistic terms

are then modeled as fuzzy numbers to form the basis for FLARE as described in the next section.

FLARE Introduction

Fuzzy numbers [ref. 11] represent a possibility distribution [ref. 12] over a real number line. Possibility

distributions capture what is possible versus what is probable. As such, possibility is less “constraining” than

probability. However, in cases where probability is not available, possibility theory offers a framework to model the

data limitations and manipulate them to develop boundaries for decisions. FLARE employs fuzzy numbers to model

the analyst’s beliefs. These fuzzy numbers are manipulated by fuzzy logic to arrive at bounded decisions. As

always, the extent of the bounds is driven by the bounds on the data and the processing of the data. Therefore, the

FLARE process does not “magically” provide “good” decisions from an imperfect data set, merely traceable

possibility boundaries.

Fuzzy logic concepts and operations employed in FLARE help to characterize and manage the qualitative

characteristics found in software safety assessments. The FLARE process then associates qualitative belief in

software safety assurance to a Software Risk Possibility (SRP) matrix. FLARE provides a method for “assessment

of confidence” by the analyst for each safety-significant requirement and function as required by MIL-STD-882E

(ref. 5). Confidence in this context is not the same as the mathematical confidence interval commonly used in

probability and statistics. Here, it is a qualitative measure of analyst “belief” that satisfactory compliance with

specific objectives will improve the “software safety goodness”, and thereby reduce the likelihood of software safety

failures. For the remainder of this paper, we will use “belief” in lieu of “confidence” to avoid confusion with

probability terminology.

The FLARE results represent a qualitative estimate of the software contribution to system-level risk. FLARE is

based on the following assumptions: (1) As each SwCI objective is completed, with sufficient quality, software

safety assurance is increased/decreased, which directly correlates to an increased belief in a safe/unsafe response to

software errors; (2) Completion of all the prescribed objectives for a given SwCI, with sufficient quality, will

represent all due diligence required to result in the desired software safety assurance; (3) The qualitative estimate for

likelihood of software safety failures depends on the specific objectives completed, the quality of the evidence, and

the objective’s contribution to software safety assurance.

The FLARE process has three high level steps (see Figure 3):

(1) Scoring objectives: Each compliance evidence artifact, of which there may be multiples, is assessed against the

SwCI objective’s requirements. Three assessment criteria are used for each artifact: (a) Completeness, (b) Quality,

and (c) Contribution. Completeness is an assessment of the percentage of key information provided by each of the

evidence artifacts. If combining scores for individual artifacts is a requirement, this then provides an assessment of

the objective’s completeness based on all the evidence. Quality is an assessment of the goodness of each artifact.

Combining the evidence assesses the quality of the evidence supporting the completion of the objective. The

Contribution criteria is an assessment of what extent the objective contributes to changing the likelihood of software

safety failures.

(2) Processing Scores: The scores for each SwCI objective are numeric based inputs. These inputs are processed

through a fuzzy logic transformation system to result in a range of possible values for the likelihood- Likelihood

Range (P).

(3) Estimating Risk Possibility: The Likelihood Range is paired with the SSF’s hazard severity category to

estimate the Software Risk Possibility (SRP) (e.g. High, Medium, or Low).

Figure 3: FLARE Process

Using FLARE

This section illustrates the FLARE method using the following information set:

Hazard Description:

Source: Failure condition that prevents continued safe flight and landing, or results in

loss of aircraft.

Mechanism: Undetected incorrect flight information.

Outcome: Death or permanent total disability; system loss

Software Contribution: Yes

Severity Category: Catastrophic

Software Control Category: Autonomous

Software Hazard Criticality Index: High (1[I])

Level-Of-Rigor (LOR): High (or SwCI-A) (requires significant analysis and testing resources)

The Program Manager Handbook for Flight Software Airworthiness (Ref. 13) provides SwCI objectives that must

be fulfilled. Our example data would require all 108 possible objectives be accomplished to ensure SwCI-A

compliance. In this context, compliance means complete and high quality evidence/artifacts that establish levels of

belief that software error leading to software safety failures have been eliminated or acceptably mitigated. The

FLARE process is used to evaluate each objective independently. For brevity, only three objectives are shown in

Table 1 and only one is further examined here.

Score the objectives: As discussed in the previous section the analyst scores the objectives for Completeness,

Quality and Contribution. The assessment could be in linguistic terms (e.g. bad, okay, great) or exact values or

interval based values (e.g. between 20 and 30%). All of these expressions of assessment can be represented as fuzzy

numbers. The FLARE process example illustrates with exact values. Three example objectives are scored in Table

1.

Table 1: Scoring Example

List of Objectives

DAL

Level

Complete

(%)

Quality

(%)

Contribution

(%)

Integrated master schedule for the system/software

development is established A 25 50 15

FHA is developed A 64 28 84

System safety requirements are traceable to the FHA A 30 45 95

For the remaining steps in the FLARE description, the example test case only considers a single SwCI objective,

“FHA is developed”. The associated scores are: Completeness = 64%, Quality = 28%, and Contribution = 84%. In

order to understand the elements of fuzzy numbers and fuzzy logic used in FLARE, the following brief section

discusses some background fuzzy logic concepts that are used in processing these scores.

Background Concepts:

Fuzzy sets and fuzzy numbers are used to represent possible values either as discrete items in a set or as continuous

numeric values. The idea of what is possible is important to FLARE since there is some research (ref. 14) that

suggests that analysts assess possibilities in problems with uncertainty. Given that FLARE uses analyst

assessments, representing and manipulating possibility seems natural. Fuzzy logic provides methods for performing

logical operations on these fuzzy values and a fuzzy calculus can provide methods for performing math operations

on fuzzy numbers. Each fuzzy set can be identified by a linguistic variable scale to facilitate human interaction.

Odd numbers of values in the scales are used to permit a middle ground to be stated. FLARE utilizes linguistic

values to characterize five key variables with 5 possible values in each scale: three are input variables, one is an

intermediate variable, and one is an output variable. The input variables are Completeness (X), Quality (Y), and

Contribution (Z). The intermediate variable is Belief (T) and the output variable is Likelihood Range (P). Each

linguistic variable can have a defined set of values such as are described below:

Completeness = [Mostly Incomplete, Some Information, Some Key Information, Most Key Information, All

Key Information]

Quality = [Inferior, Below Average, Average, Above Average, Superior]

Contribution = [Very Small, Small, Moderate, Large, Very Large]

Belief = [Very Low, Low, Medium, High, Very High]

Likelihood Range = [Frequent, Probable, Occasional, Remote, Improbable]

Using human analyst oriented value ranges described using words like those above or words like “Small” and “Very

Small” gives a relative association without defining hard boundaries. However, in order to make these relative

associations meaningful, they must be associated with numeric sub-ranges of possible values that match reasonable

responses from the linguistic population, i.e. the analysts. Representation of these responses is accomplished

through the development of a range of possible numeric values for each linguistic value. In fuzzy logic, this range

of possible values is represented by the membership function. Thus the membership function relates the members of

a given linguistic value on a numeric value scale.

In the case of the input variables, Completeness, Quality, & Contribution, the fuzzy value sub-ranges are taken from

the full range of possible compliance scores (i.e. 0% to 100%). An example membership function for Completeness

= “Some Key Information” is shown in Figure 4. Note that the “Some Key Information” membership function will

only respond to the sub-range of analyst’s estimates of Completeness scores ranging from 30% to 70%. The shape

of this membership function is not a square or rectangle of abrupt change because this function represents a

decreasing possibility of membership in “Some Key Information” as the values move away from 50%.

Figure 4

It must be noted that the degree-of-membership does not represent a “percentage”. Rather it maps a set of values

with their possibility or degree of “belonging” to a value in a linguistic set value. A degree-of-membership of zero

(0) denotes complete absence of membership in a specific linguistic “value” while a degree of one (1) represents full

membership in the linguistic set value.

Processing scores: Continuing with the exact value analysis, Figure 5, Figure 6, and Figure 7 show the example

values from the previous section plotted on their respective membership functions to show the relationship of

specific numeric values to membership functions.

Figure 5

Figure 6

Figure 7

Table 2 summarizes the results of the degree-of-membership plots:

Table 2: Degree of Membership

Linguistic

Variable

Analyst

Score Value Linguistic Set Values

Degree-of-

Membership

Completeness 64% Some Key Information 0.3

64% Most Key Information 0.7

Quality 28% Inferior 0.1

28% Below Average 0.9

Contribution 84% Large 0.3

84% Very Large 0.7

Examine the Completeness variable. Note that the Completeness variable has a degree of membership of 0.3 that

completeness is described by the linguistic value “Some Key Information”. It also has a degree of membership of

0.7 that Completeness is described by “Most Key Information”. FLARE must account for both possible values.

FLARE uses a fuzzy “rule” approach vice a fuzzy numeric approach to accomplish this. The “rules” describe

relationships between values and linguistic variables.

FLARE rules use the “IF antecedent THEN consequent” rule format to relate the linguistic variables. Note that

FLARE currently does not use a belief in the rule implication itself, which is distinct from the belief in the data.

Here are example rules employed to relate the linguistic variables:

1. If Completeness = X and Quality = Y then Belief = T

2. If Contribution = Z and Belief = T then Likelihood_Range = P

The possible linguistic values for X, Y, Z, T, and P are defined from the respective fuzzy sets for each linguistic

variable. Numeric values for X, Y, and Z are determined using the membership functions as shown in Figures 5, 6,

and 7 above. Linguistic values for T and P are determined using the Belief and Likelihood Range rule matrices (see

Table 3and Table 4). The Belief rule matrix maps Completeness and Quality values to Belief values.

Using the associations from the Belief rule matrix the following rules are derived for the example data. Values in

parentheses are specific degree-of-membership values.

If Completeness = Some Key Information (0.3) and Quality = Inferior (0.1) then Belief = Very Low (0.1)

If Completeness = Most Key Information (0.7) and Quality = Inferior (0.1) then Belief = Very Low (0.1)

If Completeness = Some Key Information (0.3) and Quality = Below Average (0.9) then Belief = Low (0.3)

If Completeness = Most Key Information (0.7) and Quality = Below Average (0.9) then Belief = Low (0.7)

Table 3: Analyst’s Belief Rule Matrix

Belief (T)

Completeness (X)

Mostly

Incomplete

Some

Information

Some Key

Information

Most key

Information

All Key

Information

Q
u

a
li

ty
 (

Y
) Inferior VL VL VL VL VL

Below Average VL L L L L

Average VL L M M M

Above Average VL L M H H

Superior VL L M H VH

Very Low (VL), Low (L), Medium (M), High (H), Very High (VH)

The Likelihood Range rule matrix maps the Belief and Contribution values to the Likelihood Range values.

Table 4: Likelihood Range Rule Matrix

Likelihood Range (P)

Belief (T)

Very Low Low Medium High Very High

C
o

n
tr

ib
u

ti
o

n

(Z
)

Very Small O R R R I

Small O O R R I

Moderate P O O R I

Large P P O R I

Very Large F P O R I

Frequent (F), Probable (P), Occasional (O), Remote (R), Improbable (I)

The Likelihood Range rules are shown below:

If Belief = Very Low (0.1) and Contribution = Large (0.3) then Likelihood Range = Probable (0.1)

If Belief = Very Low (0.1) and Contribution = Very Large (0.7) then Likelihood Range = Frequent (0.1)

If Belief = Low (0.3) and Contribution = Large (0.3) then Likelihood Range = Probable (0.3)

If Belief = Low (0.3) and Contribution = Very Large (0.7) then Likelihood Range = Probable (0.1)

If Belief = Low (0.7) and Contribution = Large (0.3) then Likelihood Range = Probable (0.3)

If Belief = Low (0.7) and Contribution = Very Large (0.7) then Likelihood Range = Probable (0.7)

Figure 8 now shows the membership functions for Likelihood Range. Note that this is a decreasing value size

logarithmic scale on the positive X-axis. The sub-ranges for the membership functions are derived from MIL-STD-

882 (ref. 15).

Figure 8

From the Likelihood Range membership functions, a composite membership polygon is created. The individual

modified membership functions (see Figure 9) create membership polygons which are combined to form a

composite membership polygon (see Figure 10). The highest membership of the “Frequent” value is 0.1 and for the

“Probable” value is 0.7. No other membership functions were intersected. The composite membership polygon is

the dotted black line in Figure 10.

Figure 9

Figure 10

The FLARE process uses a conservative approach and chooses the Likelihood Range value with the highest degree-

of-membership, i.e. the most possible, to estimate the likelihood for software safety failure. If the degrees-of-

membership are equal, FLARE chooses the left-most membership function (highest likelihood) on the graph. The

result for the example data is Likelihood Range = “Probable” (see Table 5).

Table 5: Likelihood Range

List of Objectives LOR Complete (%) Quality (%) Contribution (%) Likelihood Range (P)_

FHA is developed A 64 28 84 Probable

Estimating Risk Possibility: In order to express this likelihood in terms of qualitative risk the likelihood must be

paired with the SwCI severity. The FLARE team is currently examining approaches for this calculation. This

section discusses one approach currently being evaluated.

Using Likelihood Range value “Probable” and the Severity Category of “Catastrophic” from the example data the

Software Risk Possibility (SRP) is 1B (see Table 6 and Table 7). The color coding in the SRP table corresponds to

risk acceptance levels High (red), Serious (orange), Medium (yellow), and Low (green).

Table 6: Software Risk Possibility

Software Risk

Possibility (SRP)

Likelihood Range (P)

Frequent

(A)

Probable

(B)

Occasional

(C)

Remote

(D)

Improbable

(E)

S
H

C
I

S
ev

er
it

y
 Catastrophic (1) 1A 1B 1C 1D 1E

Critical (2) 2A 2B 2C 2D 2E

Marginal (3) 3A 3B 3C 3D 3E

Negligible (4) 4A 4B 4C 4D 4E

Table 7: Qualitative Risk 1

List of

Objectives

DAL

Level

Complete

(%)

Quality

(%)

Contribution

(%)

Likelihood

Range SRP

Qualitative

Risk

FHA is

developed A 64 28 84 Probable 1B High

Using the FLARE process allows the compliance evidence for each SwCI objective to be assessed independently

from all other SwCI objectives. This in turn allows the analyst to portray the specific SwCI objectives which need

the most attention. For example, if all the SwCI objectives for the example hazard information are assessed the

results would provide the SRP value and qualitative risk for each objective. The qualitative software risk

information can be portrayed with intrinsic resource allocation priorities for risk reduction activities. In Table 8 we

assume two out of the 108 SwCI-A objectives contribute “Frequent” likelihood of software safety failures and 106

objectives contribute “Improbable” likelihood. Since “Catastrophic” severity and “Frequent” likelihood indicate the

overall risk is “High”, the program office (PO) will need to reduce the “Frequent” likelihood for two specific

objectives to the “Improbable” range in order to accept the residual risk without higher command approval. With

this method, the PO can target unique risk reduction actions to specific SwCI objectives based on the analysis

details.

Table 8: Software Risk Category

All the Likelihood Range values in the example need to be “Improbable” at the least in order to lower the overall

qualitative SRP to Medium (yellow colored blocks in Table 8). Table 9 shows the risk gaps in terms of percent

Complete and percent Quality.

Software Risk

Category (SRC)

Likelihood Range (P)

Frequent

(A)

Probable

(B)

Occasional

(C)

Remote

(D)

Improbable

(E)

S
H

C
I

S
ev

er
it

y
 Catastrophic (1) 2 0 0 0 106

Critical (2) 0 0 0 0 0

Marginal (3) 0 0 0 0 0

Negligible (4) 0 0 0 0 0

Table 9: Qualitative Risk 2

List of

Objectives

DAL

Level Complete (%) Quality (%)

Contribution

(%)

Likelihood

Range SRP

Qualitative

Risk

FHA is

developed A

Increase score

from 64 to 81

Increase score

from 28 to 81 84 Improbable 1E Medium

The Completeness and Quality gaps are now known in terms of percent. This knowledge must be transitioned into

actions that close or minimize the compliance gaps. Since the analyst has already reviewed the SwCI compliance

evidence it is assumed the analyst kept a log of the review. The log may look similar to Table 10. From the

information contained in the review log the analyst can very specifically identify recommendations to assist the

developer in providing the necessary compliance evidence that would lead to achieving the desired risk category.

Table 10: Analyst’s Log

Date Page Section Paragraph Comment Text

(Provide clear

succinct comments)

Recommendation

(Must provide recommended

rewording or appropriate solution)

Rationale Comment

Initiator

Summary and Future Directions

The FLARE process incorporates and uniquely handles four difficult issues that plague software system safety

hazard analyses: (1) estimating software failure probability is very difficult and expensive, (2) decisions are

subjective, (3) data are imprecise, and (4) software safety risk is never quantified or qualified. Two key advantages

of FLARE are specific (highly focused) risk reduction activities can be recommended to the PO and/or developer

and qualitative software risk estimates can be compared on par with hardware and operations risk estimates. Almost

every step in the FLARE process can be tailored to a program’s unique requirements and the FLARE process is

easily automated.

During the development of the basic FLARE process, the team encountered several items that require additional

examination. Among the high interest items are the analyst’s belief in the rules and membership functions stated

previously. This is distinct from the belief in the data sets and it requires additional steps to account for this factor.

These steps are not addressed in this paper and require further research. A second high interest item is utilization of

a fuzzy mathematical approach as an alternative to the rule based approach presented in this paper.

Acknowledgements

The authors want to thank Mr. Clifton A. Ericson, Mr. James H. McDuffie (SAIC), Mr. Glenn Morris (SAIC), Ms.

Rhonda Barnes (A-P-T Research, Inc.) and Ms. Melissa Emery (A-P-T Research, Inc.) for their insightful comments

and contributions to this paper.

References

1. Joint Software System Safety Engineering Handbook, Version 1.0, 27 August 2010, pg 64.

2. MIL-STD-882, Revision E, 11 May 2012, pg 7, para. 3.2.28.

3. MIL-STD-882, Revision E, 11 May 2012, pg 14, para. 4.4.

4. MIL-STD-882, Revision E, 11 May 2012, pg 7, para. 3.2.29 and pg 12, Table III.

5. MIL-STD-882, Revision E, 11 May 2012, pg 95, para. B.2.2.5.d.

6. SED, SED-SES-PMHFSA, Program Manager Handbook for Flight Software Airworthiness, April 2010, pgs 6 –

10.

7. US Army Aviation and Missile Command, AMCOMR 385-17, AMCOM Software System Safety Policy,

Appendix E, pg 73

8. SED, SED-SES-PMHFSA, Program Manager Handbook for Flight Software Airworthiness, April 2010, pg 32.

9. US Army Aviation and Missile Command, AMCOMR 385-17, AMCOM Software System Safety Policy,

Appendix E, pg 28

10. Hazard Analysis Techniques for System Safety, Ericson, Clifton A., 2005

11. Possibility Theory An Approach to Computerized Processing of Uncertainty, Didier Dubois and Henri Prade,

1988

12. Fuzzy Sets and their Applications to Cognitive and Decision Processes, Zadeh, L.A., 1975

11. SED, SED-SES-PMHFSA, Program Manager Handbook for Flight Software Airworthiness, 23 September

2011, pgs 36 – 38.

12. E. Raufaste, R. Da Silva Neves, C. Marine (2003), Testing the Descriptive Validity of Possibility Theory in

Human Judgments’ of Uncertainty. Artificial Intelligence, 148: 197 – 218.

13. MIL-STD-882, Revision E, 11 May 2012, pg 91, Table A-II.

Biographies

Willie J. Fitzpatrick, Jr., Ph.D., U.S. Army, Research, Development, and Engineering Command, Redstone Arsenal,

AL 35898, USA, telephone − (256) 876-9945, facsimile − (256) 876-9950, e-mail − willie.fitzpatrick@us.army.mil.

Dr. Fitzpatrick has over 36 years of experience in the software/systems engineering area. His experience includes

the development and assessment of automatic control systems, systems engineering, and software engineering on

various aviation and missile systems. He is currently Chief of the Aviation Division, in the Software Engineering

Directorate of the U.S. Army Research, Development, and Engineering Command’s Aviation and Missile Research

Development and Engineering Center. Dr. Fitzpatrick is responsible for the management of life cycle software

engineering support and airworthiness assessments for several aviation systems, including the Apache, Blackhawk,

Chinook, and Kiowa Warrior aircrafts. He is also the directorate’s manager for software safety analysis and

assessments for aviation and missile systems. He has co-authored several technical reports and publications. Dr.

Fitzpatrick is a member of the System Safety Society and an active Senior Member of the IEEE. He served as Chair

of the IEEE Huntsville Section during 2007-2008.

David Skipper, BS, Physics, PhD Physics, Senior Systems Engineer, SAIC, 6263 Hackberry Road, Redstone

Arsenal, AL 35898, USA – telephone – (256) 842-1698, email – david.j.skipper@us.army.mil. Dr. Skipper has over

30 years experience in Software Development and Systems Engineering. This experience has included teaching at

the University of Alabama – Huntsville and various U.S. Army projects. He is currently working on the Kiowa

Warrior system at the Software Engineering Directorate (SED). Dr. Skipper is a member of the American Physical

Society and the IEEE.

Jonathan McNeil Sr., BS, Electrical, Software Safety & Airworthiness Engineer, US Army AMRDEC Software

Engineering Directorate, 6263 Hackberry Road, Attn: AMSRD-AMR-BA-AV, Redstone Arsenal, AL 35898, USA,

telephone – (256) 876-4295, facsimile – (256) 876-9950, email – josh.mcneil@us.army.mil. Mr. McNeil received

his BS in Electrical and Computer Engineering from the University of Alabama - Huntsville. Mr. McNeil has

worked in the Aerospace Industry for 20 years as a Software Safety and System Safety Engineer. In his current

position, Mr. McNeil is the Software Safety lead and UAS Software Airworthiness lead for the Aviation Missile

Research Development and Engineering Center SED responsible for performing software safety analyses on various

US Army military programs and software airworthiness assessments on various US Army Manned and Unmanned

Aviation Systems (UAS). Mr. McNeil has given several tutorials and written numerous papers on software safety.

He has also been an active member of System Safety Society (SSS) for over 17 years, serving as: the SSS Director

of Publicity and Media (2001-2005); Executive Chair for the 19th International System Safety Conference (ISSC)

(2001); and Past President of the Tennessee Valley Chapter (1997).

J.P. Rogers, BS, Mathematics, MS Space Systems, Software Safety Engineer, APT Research, Inc., 4950 Research

Drive, Huntsville, AL 35805, USA, telephone – (256) 327-3704, facsimile – (256) 837-7786, email – jprogers@apt-

research.com. Mr. Rogers holds a Bachelors Degree in Mathematics from Rollins College and Masters Degree in

Space Systems from Florida Institute of Technology. He has 35 years experience in explosive ordnance disposal,

managing and performing program analysis for space and ballistic missile launches, authoring FAA launch site and

launch operator license requirements, developing methods for FAA license evaluations, developing FAA license

analysis software, and developing risk prediction tools supporting public safety analysis of artillery and rocket

firings. Mr. Rogers currently serves as a Software Safety Engineer supporting the Software Engineering Directorate

mailto:david.j.skipper@us.army.mil

(SED) of the Aviation and Missile Research, Development, and Engineering Center (AMRDEC) where he evaluates

hazard analyses, software program plans and program specifications to assess compliance with software

airworthiness and safety requirements for U.S. Army missiles and missile launchers.

	MAIN MENU

	Return to Paper Index
	Return to Author Index
	Search
	Print

