Will The Real Solution Please Stand Up

Leadership Needs for Effective Changes in the Engineering Culture

Barry Hendrix Lockheed Martin Fellow Emeritus

SAE 2009 AeroTech Congress & Exhibition November 10, 2009 TV Chapter of The System Safety July15, 2013

Technology and Model Changes

- Technology Changes demand adaptation by Engineering Leaders
- Most change in the culture can be good, some change can be bad.
- No change when needed = Stagnation, falling behind competitors
- As technology changes, so should innovation. Organizational models and engineering methods must change to be effective
 - <u>Older Federated Systems</u> model based on hardware <u>units</u> engineering organizational structure based on big <u>units</u> (silos)
 - <u>Legacy Integrated Systems</u> model based on integration engineering organizational structure based on <u>functional matrix and IPT (many units</u> <u>partitioned</u>)
 - Current model sensor fused, interoperable, systems-of-systems, software intensive avionics – engineering organizations must be based on multidisciplinary <u>collaboration (meshed and highly horizontally</u> <u>Integrated).</u> Autonomous systems, high automation is growing.

Example of Technology Change

• Would the Automobile (or Aircraft) industry of 2010 develop and build products as they did in 1960s?

- Ask audience to give "more examples" of <u>then</u> and <u>now</u> for automobiles.
 - Cost and Value (\$3K vs. \$30K)
 - Style Selections (big V8 sedans vs. smaller cars, SUV)
 - Standard Technologies (Carburetors vs. EFI, Computers)
 - Options (AM radio vs. GPS, Video)
 - Fuel Economy (12 mpg @ .35 gal vs. 24 mpg @ \$3.50.
 - Required Safety Features (few vs. many)
 - Crash Protection (little vs. crumple zones and airbags)
 - Warranties, Reliability(1 yr 12K mi vs. 5 yrs 50/100K)

One Example: Aircraft Technology

- Then (1960s) Commercial or Military
 - Flight Controls: analog, units, pitch, roll and yaw amplifiers with fixed gains; mechanical bell cranks, metal stranded cable wires, pulleys, PC pumps, hydraulic lines and fluid actuators, O rings, washers, nuts, bolts and safety wire.
- Now (Early 21st Century)
 - Typical Flight Controls: digital, modular, triple/quad redundant digital computers, stability augmentation software - level A, DO-178B qualified, software controlled, partitioned CSCI, BIT, continuously monitored, fly-by- wire, multiple autopilot modes, electrical powered electro-static hydraulic actuators, fewer parts.

What type safety analysis/assessment is applicacle for each era of technology?

Military Aircraft Affordability Comparison (Safety - Loss Perspective)

- Then (1950-1960s) Legacy military tactical (fighter & attack) aircraft developed in many models, single mission, inexpensive, effective, large in numbers produced, but viewed as expendable:
 - Example: Outstanding single place F-8 Crusader earned Collier trophy and was built for fighter mission "effectiveness" (19:3 kill ratio in SE Asia). A truly great value at <\$2M (however safety record was poor ~ 40% lost in <u>non</u>-combat)
- Now (1980s -2010+) Modern military multi-role aircraft are fewer in models, <u>very expensive</u>, extremely effective, fewer in number, <u>survivable</u>, and are <u>NOT</u> viewed as expendable.
 - At \$50M \$150M apiece, what loss numbers or percentages are acceptable in this modern age?

We Must Constantly Change

 How are we going to structure and manage highly integrated, complex, and multiple partner (collaborative) programs, now, in 5 years, 10 years?

The Real Solution

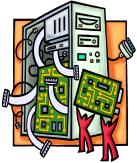
- <u>The "Real Solution" is Exceptional Leadership</u>
 - Strategic Vision and Tactical Implementation
 - Absolute Commitment to Explicit Goals
 - Focus on the Integrity of the Product Line
 - Engaged at All Levels
 - Listens to Customers and Stakeholders
 - Inclusive of Required Domains and People
 - Expectations of Effectiveness
 - Commitment to Duty, Excellence & Professionalism
 - Holds Employees Accountable for Performance
 - Allocates Value Stream Work Products

Leadership Attributes and Actions (1)

- Be engaged
- Have A Clear and Realistic Vision
- Maintain Constancy of Purpose (Deming)
- Listen to Customers and Meet their Needs
- Ensure Substance and Reality
- Focus on Ultimate Objectives
- Establish Clear Goals, Critical Path
- Collaborate and Share Knowledge for Success
- Focus on Essentials with Value
- Eliminate Ineffective and Wasteful Activity
- Be Inclusive and accept inputs
- Do What is right (know precisely what this means)

Leadership Attributes and Actions (2)

- Embrace Mentoring (Knowledge Transfer)
- Share, Share and Share
- Communicate, Communicate and Communicate
- Understand Different Views (It is OK to Debate Tactfully)
- Maintain Dignity and Respect (Don't "badmouth" people)
- Tell it like it is (speak up when there are risk issues)
- Have Dedication and Passion (Tenacity Don't cave in)
- Persevere and Remain Committed
- Maintain Integrity (Leadership and Technical)
- Meet Requirements / Expectations
- Do All of the above and much more
 - within constraints of contract, cost, schedule & 7 Ps: (performance, people, policies, plans, processes, procedures, practices)


Some Cultural Norms to Embrace

- Support suitable initiatives for improvement (Listen to input)
- Accommodate new ideas get out of the comfort zone
- Allow innovation outside the box and more critical thinking
- Communicate share important information
- Tweak, reduce, change or eliminate "outdated" command media *
- Ensure ineffective ways and means are corrected
- Update methods and models to fit the era of technology
- Allow flexibility and acceptable new ways to get things done
- Accept the need to be more inclusive and holistic
- Understand the needs for diverse methods and techniques
- Accept personality differences and management styles
- Measure domain effectiveness and improve (metrics)
- Create a work environment that brings out the best
- Share, Mentor, Train, Transfer Knowledge, Develop Staff
- * This includes ensuring holistic and "effective" best practices

Technology Models and Methods

- Eras of High Technology required different engineering approaches and system integrity methods:
 - 1940s Analog and Vacuum Tube Circuits
 - 1950s Transistor and Solid State Circuits
 - 1960s Integrated Circuits, Discrete Devices
 - 1970s Micro Chips Digital Computing Devices
 - 1980s Highly Integrated Modular Systems
 - 1990s Network, Software Intensive Systems
 - 2000s Sensor Fusion and Interoperability
 - 2010s Extensive Software Command and Control

Holistic System Safety Programs

- Safety- Critical Functionality now require more holistic approaches and formal methods for effective safety programs.
- The "blended" approach is recommended for effectiveness:
 - Hazard based (identify hazards)
 - Risk based (severity, probability, consequence)
 - Functional based (safety-critical functions)
 - Requirements based (derive safety requirements)
 - Criteria based (airworthiness, qualifications)
 - Evidence based (objective evidence and absolute proof)
 - Formal methods based for UK (safety cases, ALARP, GSN)

Safety & Integrity Culture

- Cultural Domains should be more Horizontally Integrated with Constancy of Purpose
- Free of Silos Allowing True Collaboration
 - System Safety
 - Software Safety Aspects
 - Test Safety
 - Human Systems Integration
 - Operational Safety
 - Safety Management Systems

The Engineering Culture Must Be Holistic

- Practicing Innovative and Flexible Technical Leadership with the focus on ensuring Work Product Effectiveness is the Solution:
 - Ensure Horizontal Integration with <u>Constancy of Purpose</u>
 - <u>Don't</u> Rely on One Size Fits All Processes or Solutions
 - Allow better method that may not be in Command Media
 - Seek out Collaborative and Teaming Opportunities
 - Bring Out the Best in Organizations and People
 - Take Action to Ensure A Positive Work Environment
 - Enable All to Contribute to Full Potential
 - Be able to Evaluate Progress, Measure Effectiveness and Change (self correct as needed)

A Few Recommendations

- Will The Real Solution ["True Leaders"] Please Stand Up and Vow To:
 - Be enthusiastic, even during setbacks
 - Listen to those closest to the issues
 - Be supportive of those who take risks
 - Be able to listen to different views without criticism
 - Implement policies, plans and practices that work
 - Mentor, develop, reward truly engaged engineers
 - Empower and trust engineers (but verify)
 - Be fair, but firm when needed
 - Allow more innovation and effective solutions
 - Accept new proven methods and solutions
 - Have more face time with Chief Engineers and PMs
 - Educate specific engineering disciplines on System Safety
 - Make Decisions based on Facts and Objective Evidence

A Few More Recommendations

- Remove friction and break down silos

- Eliminate barriers that hamper effectiveness
- Never impede efficiency or constrain performance
- Provide honest and sincere appreciation
- Demand High Quality Output that matters
- Prioritize and focus on decisions that matter
- Organize to fit the correct model for technology
- Lead people in the right direction set example
- Manage assets as if they were your own
- Treat people with the Golden Rule in mind
- Be a good coach and do what is right

Closing Thoughts

Famous Coach Vince Lombardi said,

..."Football is like life – it requires perseverance, self-denial, <u>hard work</u>, sacrifice, <u>dedication</u>, respect for authority"

Exceptional Leadership requires the Same!

Any questions?

"Will The Real Solution Please Stand Up" July 15, 2013

Barry Hendrix Lockheed Martin Fellow Emeritus <u>barry.hendrix@lmco.com</u> <u>Barry.Hendrix@NGC.com</u> <u>aviationgeek@bellsouth.com</u>

• 470.422.9837