

Software System Safety, Software Criticality, and Software Hazard Control Categories for Information Systems

Mike D. Pessoney: APT-Research: Huntsville, AL

Shannon Stump; The Boeing Company; Huntsville, AL

Keywords: Information Systems, Software System Safety, Software Control Categories, Level of Rigor

Abstract

Faced with the task of assessing software safety in a large military information family of systems, the authors found

the sample Software Control Categories matrices described in MIL-STD-882E and in the Joint Software System

Safety Engineering Handbook (JSSSEH) inadequate for controlling and evaluating the software safety of the system.

For an information system, both the restricted span of control and the lack of control level independence posed

problems to the evaluators. Substitute Software Control Categories (renamed Software Hazard Control Categories)

were postulated and refined until sufficient fidelity was reached for the Software Hazard Control Categories. These

categories were used for the evaluation of software criticality and mapping to a level of rigor plan for software

hazard control. This paper describes the methods and the substitute Software Hazard Control Categories developed,

and then summarizes the results obtained.

An Information System, as used here, is a system that does not directly control any safety critical hardware or

subsystems. All control is performed by an operator or associated system, based in whole or in part, on data

provided by the information system.

Introduction

The Software Control Categories (SCC) table is used in software system safety along with the hazard severity table

to determine a Software Criticality Index (SwCI). The SwCI is used to assign a Level of Rigor (LOR) or set of

assurance task requirements to be applied to a Computer Software Configuration Item (CSCI). Completing the LOR

requirements provides the required software safety confidence. See Figure1.

For systems controlled by software, the SCC establishes a relationship between the level of software control and the

activities required to build confidence in safety assurance. The relationship between SCC and LOR intensity is direct

such that the more control software has over a safety-significant function, the more stringent requirements, design,

code, and test/verification activities are necessary for developing the software and assessing the safety of the system.

While this reasoning is valid for systems controlled by software, the reasoning becomes ambiguous for information

systems that do not control systems except through the actions of an operator or the actions of an associated system.

Figure 1 Relation of Software Safety Tables

Discussion

The Software Control Categories example tables available provided sufficient guidance to assess the contributions

of software for systems controlling safety critical hardware or subsystems and for some mixed control and

information systems, but lacked sufficient fidelity to assess an information-only system. For an information system,

MIL-STD-882E (ref 1) and the Joint Software System Safety Engineering Handbook (JSSSEH) (ref 2) tables allow

control of only 4 out of 5 levels and neither allows level 1 control from an information system since level 1 control

is limited to autonomous operations. See Table 1Error! Reference source not found.. Additionally, when

assessing the control exercised by a safety-significant software function or safety-significant software requirement,

the function or requirement may fit one level, more than one level, or no level at all in existing tables.

The Software Hazard Control Categories (SHCC) table was developed to bring more fidelity to the software control

evaluation for an information system. The intent was to provide more meaningful software control categories for

information systems that describe the control levels so they could be more accurately assigned by the analyst. These

control categories would cover the same span of control that the control system software covered. The descriptions

of system control were not included in the SHCC for this paper since no system control was exercised by the system

under study. See Table 2.

Consider two aircraft systems where one has an engine fire control system that detects and responds to an engine fire

while the other detects the engine fire condition and alerts the pilot to respond. The engine fire detection software is

of equal safety significance in both systems, but is assigned level 1 control in the first scenario and level 2 control in

the second scenario. A failure of the detection software has equal chances for a mishap in both systems. When a

single software exception, failure, fault, or delay may lead directly to a mishap the software logically should be

considered to have the highest level of hazard control. Whether an operator is involved is incidental to the level of

control.

Consider two patient oxygen monitors where one has an automated system to increase the oxygen supplied while the

other detects a low oxygen condition and alerts hospital personnel to respond. The low oxygen detection software is

of equal safety significance in both systems, but is assigned level 1 control in the first scenario and level 2 control in

Software
Criticality

Table Software
Control

Categories

(SCC) Table

System
Hazard
Severity

Table

Level
of

Rigor

Table

the second scenario. A failure of the detection software has equal chances for a mishap in both systems. When a

single software exception, failure, fault, or delay may lead directly to a mishap the software logically should be

considered to have the highest level of hazard control.

Hazard descriptions for the two cases in each example are very similar as seen in the following diagram:

Notice that whether the control is autonomous or operator controlled does not change the initiating cause or the

mishap result of the hazard. Conclusion drawn from these examples and the system under study was:

Operator or external system involvement is incidental to the level of control.

 Level-of-software-control to assess software criticality is an accurate attribute to use for control systems but a

misleading attribute to use for information systems. Certainly the detection software in the hazard example could be

identified as level 1 control in both cases, but it may be rarely identified as autonomous in the case an operator is

involved to control the hazard.

A safety-significant subsystem is a subsystem containing identified hazards. Software systems that fail to properly

control safety-significant subsystems do so because they fail to control one or more of its hazards (not because they

fail to control the subsystem). Software systems that fail to provide information to an operator to control a safety

significant subsystem also fail to control essentially the same hazard. In both cases, the detection software failure

has the same result and should be subjected to the same level of rigor evaluation. Level of software hazard control

seems a more accurate attribute to describe both control systems and information systems.

This is not practical within existing Software Control Categories tables and cannot be as long as autonomy is used as

a primary discriminator. Autonomy has been used to describe software controlling a safety-significant subsystem

with no possibility of intervention by a control entity. Since what is actually controlled is a hazard causing the

subsystem to be safety-significant, this is the same as software for which failure provides a sole source for a hazard

leading to conclusion 2:

Sole source for a hazard is a more accurate discriminator for software control than

autonomous control of a subsystem.

Existing SCC tables list both control and information descriptions for level of control. This paper developed and

used only the information descriptions because the information system being evaluated did not control any safety-

significant subsystems. A combined table was developed and is presented as Table 3 but was not verified or used.

Existing Software Control Categories

Table 2 contains the common level numbers and level names from the MIL-STD-882E and JSSSEH software

control categories tables along with the discriminators used in the tables. The discriminators used for information

systems are highlighted in yellow.

 Combined MIL-STD-882E, and JSSSEH 2010

Software Control Categories (SCC)

Level Name MIL-STD-882E JSSSEH Description

1
AT

Autonomous

Software functionality that exercises

autonomous control authority over potentially

safety-significant hardware systems,

subsystems, or components without the

possibility of predetermined safe detection and

intervention by a control entity to preclude the

occurrence of a mishap or hazard.

(This definition includes complex

system/software functionality with multiple

subsystems, interacting parallel processors,

multiple interfaces, and safety-critical

functions that are time critical.)

Software functionality that exercises

autonomous control authority over

potentially safety-critical or safety-

significant hardware systems,

subsystems, and/or components

without the possibility of

predetermined safe detection and

intervention by a control entity to

preclude the occurrence of a mishap or

hazard.

(This definition includes complex

systems/software functionality with

multiple subsystems, interacting

parallel processors, multiple interfaces,

and safety critical functions that are

time critical.)

2

SAT

Semi-

Autonomous

Software functionality that exercises control

authority over potentially safety-significant

hardware systems, subsystems, or components,

allowing time for predetermined safe detection

and intervention by independent safety

mechanisms to mitigate or control the mishap

or hazard.

(This definition includes the control of

moderately complex system/software

functionality, no parallel processing, or few

interfaces, but other safety

systems/mechanisms can partially mitigate.

System and software fault detection and

annunciation notifies the control entity of the

need for required safety actions.)

Software functionality that exercises

control authority over potentially

safety-critical or safety-significant

hardware systems, subsystems, and/or

components allowing time for

predetermined safe detection and

intervention by independent safety

mechanisms to mitigate or control the

hazard.

(This definition includes the control of

moderately complex system/software

functionality, no parallel processing, or

few interfaces, but other safety

systems/mechanisms can partially

mitigate. System and software fault

detection and annunciation that

notifies the control entity of the need

for required safety actions.)

Software item that displays safety-significant

information requiring immediate operator

entity to execute a predetermined action for

mitigation or control over a mishap or hazard.

Software exception, failure, fault, or delay will

allow or fail to prevent the mishap occurrence.

 (This definition assumes that the safety-critical

display information may be time-critical, but

Software items that display safety-

critical or safety significant

information requiring immediate

operator entity to execute a

predetermined action for mitigation or

control over a hazard. Software

exception, failure fault, or delay will

allow or fail to prevent the mishap

the time available does not exceed the time

required for adequate control entity response

and hazard control.)

occurrence.

(This definition assumes that the

safety-critical display information may

be time-critical but the time available

does not exceed the time required for

adequate control entity response and

hazard control.)

3

RFT

Redundant

Fault

Tolerant

Software functionality that issues commands

over safety-significant hardware systems,

subsystems, or components requiring a control

entity to complete the command function. The

system detection and functional reaction

includes redundant, independent fault tolerant

mechanisms for each defined hazardous

condition.

(This definition assumes that there is adequate

fault detection, annunciation, tolerance, and

system recovery to prevent the hazard

occurrence if software fails, malfunctions, or

degrades. There are redundant sources of

safety-significant information, and mitigating

functionality can respond within any time-

critical period.)

Software functionality that issues

commands over safety-critical or

safety-significant hardware systems,

subsystems, and/or components

requiring a control entity to complete

the command function. The system

detection and functional reaction

includes redundant, independent fault

tolerant mechanisms for each defined

hazardous condition.

(This definition assumes that there is

adequate fault detection, annunciation,

tolerance, and system recovery to

prevent the hazard occurrence if

software fails, malfunctions, or

degrades. There are redundant sources

of safety-critical or safety-significant

information and mitigating

functionality can respond within any

time-critical period.)

Software that generates information of a safety-

critical nature used to make critical decisions.

The system includes several redundant,

independent fault tolerant mechanisms for each

hazardous condition, detection and display.

Software that generates information of

a safety-critical or safety-significant

nature used to make critical decisions.

The system includes several,

redundant, independent, fault tolerant

mechanisms for each hazardous

condition, detection, and display.

4 Influential

Software generates information of a safety-

related nature used to make decisions by the

operator, but does not require operator action to

avoid a mishap.

Software generates information of a

safety-related nature used to make

decisions by the operator but does not

require operator action to avoid a

mishap.

5

NSI

No Safety

Impact

Software functionality that does not possess

command or control authority over safety-

significant hardware systems, subsystems, or

components and does not provide safety-

significant information. Software does not

provide safety-significant or time sensitive data

or information that requires control entity

interaction. Software does not transport or

resolve communication of safety-significant or

time sensitive data.

Software functionality that does not

possess command or control authority

over safety-related hardware systems,

subsystems, and/or components, and

does not provide safety-related

information. Software does not

provide safety-critical or time-

sensitive data or information that

requires control entity interaction.

Software does not transport or resolve

communication of safety-critical or

time-sensitive data.

Note: All SCC categories should be re-evaluated if legacy software functions are included in a System-of-System

environment. The legacy functions should be evaluated at both the functional and physical interfaces for potential

influence or participation in top-level (SoS) mishap and hazard causal factors.

Table 1: Combined MIL-STD-882E, and JSSSEH Software Control Categories

Example Software Hazard Control Categories (SHCC) Table for Information Systems

This Software Hazard Control Categories Table was the result of the author’s attempts to create a more accurate and

usable table for assigning control to information system software. The discriminator “Immediate” can be read as

“Now” and describes control of requirements or functions where failure can result in an immediate mishap. The

discriminator “Eventual” can be read as “Later” and describes control of requirements or functions where failure can

result in an eventual mishap. See examples to clarify.

Example Software Hazard Control Categories (SHCC) Table for Information Systems

Level Name Description Examples

1

Sole

Source

Immediate

(Now)

A software function or requirement that necessitates

immediate response from an operator or external

system based on data provided for mitigation or control

over a hazard and potential immediate mishap. The

software collection, distribution, display, or warning

function or requirement provides the only information

source.

Single source:

Entering a minefield, stall warning,

low oil pressure, red traffic light,

engine overheat, fire alarm, tornado

warning, impending collision, medical

evacuation request message, no pulse,

breathing interrupted

2

Sole

Source

Eventual

(Later)

A software function or requirement that may

necessitate eventual response from an operator or

external system based on data provided for mitigation

or control over a hazard and potential eventual mishap.

The software collection, distribution, display, or

warning function or requirement provides the only

information source.

Single source:

Approaching a minefield, check

engine, tornado watch, gas volume

low, tire pressure low, communication

suite status change notification

3

Redundant

Source

Immediate

(Now)

A software function or requirement that necessitates

immediate response from an operator or external

system based on data provided for mitigation or control

over a hazard and potential immediate mishap. The

software collection, distribution, display, or warning

function or requirement provides the primary source of

information although independent supplemental

sources are available.

Multiple independent sources (M):

Stall warning(M), low oil pressure (M),

red traffic light (M), engine overheat

(M), fire alarm (M), tornado warning

(M), impending collision (M), medical

evacuation request message(M), no

pulse(M), breathing interrupted(M)

4

Redundant

Source

Eventual

(Later)

A software function or requirement that may

necessitate eventual response from an operator or

external system based on data provided for mitigation

or control over a hazard and potential eventual mishap.

The software collection, distribution, display, or

warning function or requirement provides the primary

source of information although independent

supplemental sources are available.

Multiple independent sources (M):

Check engine(M), tornado watch(M),

communication suite status change

notification (M)

5

NSI

No Safety

Impact

A software function or requirement that does not

necessitate immediate or eventual response from an

operator based on data provided to prevent the

occurrence of a mishap. It does not provide safety-

related or time-sensitive data or information that

requires control entity interaction.

Time of day, indoor temperature, phase

of moon, current fashions, most

internet data

Table 2: Example Software Hazard Control Categories for Information Systems

Experience of use of SHCC table

In reviewing requirements at the Software Requirements Specification (SRS) level in an information system, the

software safety team reviewed several thousand requirements yielding nearly a thousand safety-significant

requirements, but had great trouble identifying the software criticality of these requirements using the available SCC

tables.

The system used for testing this SHCC table was a battlefield information family of systems where many forms of

information were provided for Situational Awareness (SA) and Command and Control (C2). The hazards were

restricted to the accuracy, timeliness, and completeness of the information provided along with some non-

interference hazards associated with co-resident functions. The collection, distribution, display, and warning

functions and requirements that affected hazards were designated as safety-significant and traced to the hazards

affected. A SHCC value from the table was chosen for each requirement to determine the level of rigor needed to

provide confidence in the software. The use of the SHCC table provided consistent SwCI values from the Software

Criticality Table for multiple evaluators while the SCC table did not. The SwCI results were the same using the SCC

and SHCC tables in this system but were reached with substantially less bias, negotiation, argument, and rework.

(This was important in a system involving several analysts and several thousand requirements).

The Software Safety team conducted continuous analyses to “living” (continuously updated) software requirement

specifications. The team was able to compare results from utilizing the existing Software Control Categories with

results from utilizing the proposed Software Hazard Control Categories. This methodology minimized variability in

hazard impact conclusions made by multiple project team members. It is a much easier technique to use for software

safety analyses involving multiple analysts due to its straightforward, Boolean nature. In this implementation

example, two analysts performed the categorization analysis on the same requirement subsets and results were

compared. Results were identical, validating the ease of result replication. In this test, the assignment process proved

to be more user-friendly and applicable to the type of system, thus yielding more accurate results and an overall

better understanding of the safety impact of the information system. This methodology also helped eliminate

potential safety-significant requirements from being incorrectly allocated into the “No Safety Impact” level due to

lack of adherence to the descriptions in the remaining levels.

Benefits of Using SHCC Table

The example SHCC table allows information systems software hazard control at all the same levels as hardware

control, an approach which seems appropriate. If properly assessed for response time needed and source type using

the example SHCC table, a safety-significant software function or requirement will fit exactly one hazard impact

level, eliminating variable conclusions. In the event that a safety-significant requirement fails to fit one of the SHCC

levels, the designation as safety-significant should be questioned.

Drawbacks of Using SHCC Table

Allowing information system software to be classed as Level 1 may cause additional effort to be expended by

software safety. Indeed, if the system provides single source data requiring immediate operator action to control a

hazard and avoid an immediate mishap, then additional effort should be required! Compartmentalizing such

software to a single CSCI can limit the effort as can providing multiple sources for the data.

Combining the SCC and SHCC Table

Combining the software control categories and software hazard control categories tables may present some

difficulties for software safety of a system containing both control and information. Therefore, an example

combined table was formed as a guide and is presented as Table 3 below. The control descriptions were not used on

the current project.

Combined Table Control-(MIL-STD-882E), Information-(SHCC)

Level Name Description

1
Sole Source

Immediate

Software functionality that exercises sole source control over hardware

systems, subsystems, or component hazards without the possibility

intervention by an independent control entity to preclude the occurrence

of a hazard and potential immediate mishap. (This definition includes

complex system/software functionality with multiple subsystems,

interacting parallel processors, multiple interfaces, and safety-critical

functions that are time critical.)

A software function or requirement that necessitates immediate response

from an operator or external system based on data provided for

mitigation or control over a hazard and potential immediate mishap. The

software collection, distribution, display, or warning function or

requirement provides the only information source.

2

Sole Source

Eventual

Software functionality that exercises sole source control over hardware

systems, subsystems, or component hazards, without the possibility of

intervention by an independent control entity to preclude the occurrence

of a hazard and potential eventual mishap..

(This definition includes the control of moderately complex

system/software functionality, no parallel processing, or few interfaces,

but other safety systems/mechanisms can partially mitigate. System and

software fault detection and annunciation notifies the control entity of the

need for required safety actions.)

A software function or requirement that may necessitate eventual

response from an operator or external system based on data provided for

mitigation or control over a hazard and potential eventual mishap. The

software collection, distribution, display, or warning function or

requirement provides the only information source.

3

Redundant

Source

Immediate

Software functionality that exercises control over systems, subsystems,

or component hazards requiring an independent redundant control entity

to complete the control function and control the hazard and potential

immediate mishap.

(This definition assumes that there is adequate fault detection,

annunciation, tolerance, and system recovery to prevent the hazard

occurrence if software fails, malfunctions, or degrades. There are

redundant sources of safety-significant information, and mitigating

functionality can respond within any time-critical period.)

A software function or requirement that necessitates immediate response

from an operator or external system based on data provided for

mitigation or control over a hazard and potential immediate mishap. The

software collection, distribution, display, or warning function or

requirement provides the primary source of information although

independent supplemental sources are available.

4 Redundant A software function or requirement that may necessitate eventual

Source

Eventual

response from an operator or external system based on data provided for

mitigation or control over a hazard and potential eventual mishap. The

software collection, distribution, display, or warning function or

requirement provides the primary source of information although

independent supplemental sources are available.

5

NSI

No Safety

Impact

Software functionality that does not possess command or control

authority over safety-significant hardware systems, subsystems, or

components and does not provide safety-significant information.

Software does not provide safety-significant or time sensitive data or

information that requires control entity interaction. Software does not

transport or resolve communication of safety-significant or time sensitive

data.

Note: All SCC categories should be re-evaluated if legacy software functions are included in a

System-of-System environment. The legacy functions should be evaluated at both the functional and

physical interfaces for potential influence or participation in top-level (SoS) mishap and hazard

causal factors.

Table 3: Combined Table SCC (MIL-STD-882E) and, Information (SHCC)

Conclusions

Use of the example SHCC matrix is recommended for more accurately determining the software hazard control for

system requirements and/or functions within an information system. This methodology has thus far yielded

successful results for its charter execution by the software safety team supporting an Army information family of

systems program. The methodology developers believe that its applicability and beneficial contributions are

universal to not only systems similar to the example explained in this paper, but to most if not all information

systems. For application to a combined control and information system, the SHCC table would have to be expanded

to address software control of safety-significant subsystems using Table 3 as a guide. This combined table was not

needed or used in the system under review. Using the SHCC involves a young methodology implying the existence

of some potential drawbacks, but the developers believe this is a favorable solution to the challenge presented in the

abstract.

References

1. U.S. Department of Defense. MIL-STD-882E, Standard Practice for System Safety. Rev. E, 2012.

2. U.S. Department of Defense. JOINT SOFTWARE SYSTEMS SAFETY ENGINEERING HANDBOOK,

Version 1.0, August 27, 2010

Biography

Mr. Pessoney is currently a Software System Safety Engineer working in software system safety supporting the U.S.

Army’s Aviation and Missile Research, Development, and Engineering Center (AMRDEC) Software Engineering

Directorate (SED). Mr. Pessoney has worked in the Military and Space Software Industry for 45 years as a Software

Engineer, Software Development Manager, and System Software Safety Engineer. Major programs supported

include software development for the Apollo program, Site Defense Ballistic Missile Defense, P3-B/P-3C

communications programs, Grizzly Remote I/O Modules, and Abrams and Bradley Diagnostics, as well as software

system safety for the Apache, Gladiator, NLOS, and JBC-P systems. Mr. Pessoney received his BS and MA in

Mathematics from Sam Houston State University in Huntsville, Texas. Mr. Pessoney has been an active member of

the System Safety Society (SSS) for 7 years and has served as VP and President of the TVC Chapter.

Ms. Stump is currently a System Safety Engineer supporting National Aeronautics and Space Administration

(NASA). Ms. Stump previously supported the U.S. Army’s Aviation and Missile Research, Development, and

Engineering Center (AMRDEC) Software Engineering Directorate (SED). Ms. Stump supported the Joint Battle

Command Platform (JBC-P) program as a Junior Software Safety Engineer. Ms. Stump received her BS in Industrial

and Systems Engineering from Auburn University in Auburn, Alabama.

