

BLAISE PASCAL "THE FATHER OF RISK-BASED DECISIONS"

Then

The Original Pascal's Wager

	Right	Wrong
Believe	Heaven	Nothing
Not Believe	Nothing	Hell

"God is or He is not...Let us weigh the gain and the loss in choosing...'God is.' If you gain, you gain all, if you lose, you lose nothing. Wager, then, unhesitatingly, that He is."

$$
\sim 1654
$$

Now

The Generic Pascal's Wager

Risk-based decisions rely on an evaluation of future events for probable gains and losses. Many of these evaluations are in the generic form of Pascal's Original Wager.

BLAISE PASCAL "THE FATHER OF RISK-BASED DECISIONS"

```
L O G I C
OR, THE
```



```
THINKING
IN WHICH
Befides the Common, are contain'd many Excellent Nam Rules, very profitable for directing of Reafon, and acquiring of \(\mathcal{J}\) mdgmert, in things as well relating to the Inftruction of a Mans felf, as of others.
In Four Palts.
I. Confifting of Refielioms upon Ideas, or upon the fof \(f\) Opration of the Mind, which is called Approhomfim, \&cc.
II.Of Confiderations of Men about Properfudgments,8ce. III. Of the Natiare and various kinds of Refoining, \&\%c. IV. Treats of the nroft profitabie Merbod for Demomffráting or Itluftrating any Truth, \&\%c.

> TO WHICH
Is added an INDEX to the whole \(B O O K\),
```

For the Extellency of the Matter, Printed many times fa Fremish and Latin, and now for Publick Good Tranlated toco Ev'gijb by Several Hands.

LONDON,
Printed by T: B. for Foin Toplor at the Stip in Sr.
Paul's Churct-hard, MDCXCIII:

Logic or the Art of Thinking

"So then, our fear of harm ought be proportional not only to the magnitude of the harm but also the probability of the event."

- 1662

Basic Risk Equation:

Risk $=$ Likelihood \times Consequences

RISK DEFINED IN 1662

Chapter 16. Judgments we make concerning future accidents.
"These rules, [referring to earlier chapters] which are helpful for judging about past events, can be easily applied to future events...
"Many people, for example, are exceedingly frightened when they hear thunder. If thunder makes them think of God and death and happiness, we would not think about it too much. But if it is only the danger of dying by lightning that causes them this unusual apprehension, it is easy to show that this is unreasonable. For out of two million people, at most there is one who dies this way. We could even say that there is hardly a violent death that is less common. So, then, our fear of some harm ought to be proportional not only to the magnitude of the harm, but also to the probability of the event. Just as there is hardly any kind of death more rare than being struck by lightning, there is also hardly any that ought to cause less fear."

PASCAL'S 8 RULES

Chapter 11. The scientific method reduced to eight main rules.

Definitions:

1. Leave no term even slightly obscure or equivocal without defining it.
2. In definitions, use only terms that are perfectly known are have already been explained.

Axioms:

3. In axioms, require everything to be perfectly evident.
4. Accept as evident what needs only little attention to be recognized as true.

Demonstrations:

5. Prove all propositions that are even slightly obscure...
6. Never exploit the equivocation in terms by failing to substitute mentally the definitions that restrict and explain them.

Methods:

7. Treat things in their natural order beginning with the most general...
8. Divide each genus into species, each whole into part, and each difficulty into all its cases.

Pascal, one of history's greatest mathematicians, encouraged a concise, disciplined, and structured approach.

INTOLERABLE to
man as being
fully $y_{\text {without }}$ rest,
without a assion, BUSINESS, without entertainment,
"that CARE.
-Blaise Pascal

-Blaise Pascal

DISCOVERED
TT that all
HUMANewil
Man' , mostrom this? Sbeing
UNABLE to
$\sin _{\text {in }}^{\text {tsill }}$ Room.
-Blaise Pascal

So what would Pascal think?

So what would Pascal think?

So what would Pascal think?

So what would Pascal think?

Use Concise Language

About the "casualty" standard he would think:
∞ Casualty to most of the world is euphemism for death.
∞ Casualty to a mathematical risk analyst is:

* Death + Serious Injury.
* This produces an exaggerated bias that can dominate the answer.

He would ask: Why build in such obvious and unnecessary flaws in communication?
2o Fatality is a concise measure.
∞ Serious injury is not nearly as concise but nevertheless, it can be measured without bias.

Further Reading

∞ Arnauld, Antoine; Nicole, Pierre; Logic or the Art of Thinking, 1996.
əo Bernstein, Peter L.; Against the Gods, The Remarkable Story of Risk; 1998.

分 Hacking, Ian; The Emergence of Probability; 1975.
∞ Muir, Jane; Of Men and Numbers, The Story of the Great Mathematicians; 1996.
\& Pfitzer, Tom; Hardwick, Meredith; Dwyer, Saralyn; Clemens, Pat; Pascal and the Risk Assessment Code (RAC) Matrix; 2001.
∞ French, Heather; a publication of original artwork using the quotes of Blaise Pascal, found at: www.apt-research.com/products/PascalPosters.pdf

Blaise Pascal and the Risk Assessment Code (RAC) Matrix

International System Safety Conference
Huntsville, Alabama
September 13, 2001

APT Research, Inc.
Tom Pfitzer, Meredith Hardwick, Saralyn Dwyer

THE 882D RAC MATRIX AS VIEWED BY PASCAL'S PROPORTIONAL CONCEPT

PROPORTIONAL RAC MATRIX EXAMPLE 1

Footnote: This RAC was proposed for use by the Range Commander's Council in 1996. PROPORTIONAL RAC MATRIX EXAMPLE 2

Probability of Occurrence Per ___ Uses (Estimate of Total Annual Exposure)

Footnote: This RAC was proposed for use by the IM Community in 2000 at a NIMIC Conference.

AN APPROACH TO DEFINING PROPORTIONAL RACS

1. Define consequence scale
a. Define units

- Deaths
- Injury
- Cost
- Etc.
b. Define range
c. Define number of subdivisions

2. Define probability (or frequency)
a. Define units

- Events per year (single item)
- Events per year (all items)
- Events per lifetime (single item)
- Events per lifetime (all items)
b. Define range
c. Define number of subdivisions

3. Define upper and lower bounds for risk
a. De minimis
b. Unthinkable
4. (Optional) Color code to illustrate risk concept

